This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118394 #18 Feb 25 2022 11:00:22 %S A118394 1,1,1,1,6,1,24,1,60,1,120,360,1,210,2520,1,336,10080,1,504,30240, %T A118394 60480,1,720,75600,604800,1,990,166320,3326400,1,1320,332640,13305600, %U A118394 19958400,1,1716,617760,43243200,259459200,1,2184,1081080,121080960,1816214400 %N A118394 Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows. %C A118394 Row sums form A118395. %C A118394 Eigenvector is A118396. %H A118394 G. C. Greubel, <a href="/A118394/b118394.txt">Rows n = 0..150 of the triangle, flattened</a> %F A118394 E.g.f.: A(x,y) = exp(x + y*x^3). %e A118394 Triangle begins: %e A118394 1; %e A118394 1; %e A118394 1; %e A118394 1, 6; %e A118394 1, 24; %e A118394 1, 60; %e A118394 1, 120, 360; %e A118394 1, 210, 2520; %e A118394 1, 336, 10080; %e A118394 1, 504, 30240, 60480; %e A118394 1, 720, 75600, 604800; %e A118394 1, 990, 166320, 3326400; %e A118394 1, 1320, 332640, 13305600, 19958400; %e A118394 ... %t A118394 T[n_, k_] := n!/(k!(n-3k)!); %t A118394 Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* _Jean-François Alcover_, Nov 04 2020 *) %o A118394 (PARI) T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!) %o A118394 (Sage) %o A118394 f=factorial; %o A118394 flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # _G. C. Greubel_, Mar 07 2021 %o A118394 (Magma) %o A118394 F:= Factorial; %o A118394 [F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // _G. C. Greubel_, Mar 07 2021 %Y A118394 Cf. A118395 (row sums), A118396 (eigenvector). %Y A118394 Variants: A059344, A118931. %K A118394 nonn,tabf %O A118394 0,5 %A A118394 _Paul D. Hanna_, May 07 2006