cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118404 Triangle T, read by rows, where all columns of T are different and yet all columns of the matrix square T^2 (A118407) are equal; also equals the matrix inverse of triangle A118400.

Table of values

n a(n)
0 1
1 1
2 -1
3 -1
4 0
5 1
6 -1
7 1
8 -1
9 -1
10 1
11 0
12 0
13 2
14 1
15 1
16 -1
17 0
18 -2
19 -3
20 -1
21 -1
22 0
23 1
24 2
25 5
26 4
27 1
28 -1
29 1
30 -1
31 -3
32 -7
33 -9
34 -5
35 -1
36 1
37 0
38 0
39 4
40 10
41 16
42 14
43 6
44 1
45 1
46 -1
47 0
48 -4
49 -14
50 -26
51 -30
52 -20
53 -7
54 -1
55 -1
56 0
57 1
58 4
59 18
60 40
61 56
62 50
63 27
64 8
65 1
66 -1
67 1
68 -1
69 -5
70 -22
71 -58
72 -96
73 -106
74 -77
75 -35
76 -9
77 -1
78 1
79 0
80 0
81 6
82 27
83 80
84 154
85 202
86 183
87 112
88 44
89 10
90 1
91 1
92 -1
93 0
94 -6
95 -33
96 -107
97 -234
98 -356
99 -385
100 -295
101 -156
102 -54
103 -11
104 -1
105 -1
106 0
107 1
108 6
109 39
110 140
111 341
112 590
113 741
114 680
115 451
116 210
117 65
118 12
119 1
120 -1
121 1
122 -1
123 -7
124 -45
125 -179
126 -481
127 -931
128 -1331
129 -1421
130 -1131
131 -661
132 -275
133 -77
134 -13
135 -1
136 1
137 0
138 0
139 8
140 52
141 224
142 660
143 1412
144 2262
145 2752
146 2552
147 1792
148 936
149 352
150 90
151 14
152 1

List of values

[1, 1, -1, -1, 0, 1, -1, 1, -1, -1, 1, 0, 0, 2, 1, 1, -1, 0, -2, -3, -1, -1, 0, 1, 2, 5, 4, 1, -1, 1, -1, -3, -7, -9, -5, -1, 1, 0, 0, 4, 10, 16, 14, 6, 1, 1, -1, 0, -4, -14, -26, -30, -20, -7, -1, -1, 0, 1, 4, 18, 40, 56, 50, 27, 8, 1, -1, 1, -1, -5, -22, -58, -96, -106, -77, -35, -9, -1, 1, 0, 0, 6, 27, 80, 154, 202, 183, 112, 44, 10, 1, 1, -1, 0, -6, -33, -107, -234, -356, -385, -295, -156, -54, -11, -1, -1, 0, 1, 6, 39, 140, 341, 590, 741, 680, 451, 210, 65, 12, 1, -1, 1, -1, -7, -45, -179, -481, -931, -1331, -1421, -1131, -661, -275, -77, -13, -1, 1, 0, 0, 8, 52, 224, 660, 1412, 2262, 2752, 2552, 1792, 936, 352, 90, 14, 1]