This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118412 #8 Apr 25 2016 11:45:29 %S A118412 1,5,15,105,42,63,90,495,55,143,91,1365,420,510,612,2907,855,665,385, %T A118412 1771,1518,1725,1950,8775,2457,5481,1015,4495,1240,4092,4488,19635, %U A118412 5355,11655,6327,9139,2470,2665,8610,37023 %N A118412 Denominator of sum of reciprocals of first n pentatope numbers A000332. %C A118412 Numerators are A118411. Fractions are: 1/1, 6/5, 19/15, 136/105, 83/63, 119/90, 656/495, 73/55, 190/143, 121/91, 1816/1365, 559/420, 679/510, 815/612, 3872/2907, 1139/855, 886/665, 513/385, 2360/1771, 2023/1518, 2299/1725, 2599/1950, 11696/8775, 3275/2457, 7306/5481, 1353/1015, 5992/4495, 1653/1240, 5455/4092, 5983/4488, 26176/19635, 7139/5355, 15538/11655, 8435/6327, 12184/9139, 3293/2470, 3553/2665, 11479/8610, 49360/37023. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392. %F A118412 A118411(n)/A118412(n) = SUM[i=1..n] (1/A000332(n)). A118411(n)/A118412(n) = SUM[i=1..n] (1/C(n+2,4)). A118411(n)/A118412(n) = SUM[i=1..n] (1/(n*(n+1)*(n+2)*(n+3)/24)). %e A118412 a(1) = 1 = denominator of 1/1. %e A118412 a(2) = 5 = denominator of 6/5 = 1/1 + 1/5. %e A118412 a(3) = 15 = denominator of 19/15 = 1/1 + 1/5 + 1/15. %e A118412 a(4) = 105 = denominator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35. %e A118412 a(5) = 42 = denominator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70. %e A118412 a(10) = 143 = denominator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715. %e A118412 a(20) = 1771 = denominator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855. %o A118412 (PARI) s=0;for(i=4,50,s+=1/binomial(i,4);print(denominator(s))) /* Phil Carmody, Mar 27 2012 */ %Y A118412 Cf. A000332, A022998, A026741, A118391, A118391, A118411. %K A118412 easy,frac,nonn %O A118412 1,2 %A A118412 _Jonathan Vos Post_, Apr 27 2006