A118430 Number of binary sequences of length n containing exactly one subsequence 010.
0, 0, 0, 1, 4, 10, 22, 47, 98, 199, 396, 777, 1508, 2900, 5534, 10492, 19782, 37119, 69358, 129118, 239578, 443229, 817822, 1505389, 2764986, 5068435, 9273928, 16940488, 30897020, 56271128, 102347564, 185922589, 337353688, 611462514
Offset: 0
Keywords
Examples
a(4) = 4 because we have 0100, 0101, 0010 and 1010.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=2, 1 peak.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-5,2,-1).
Programs
-
Maple
g:=z^3/(1-2*z+z^2-z^3)^2: gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=0..38);
-
Mathematica
LinearRecurrence[{4, -6, 6, -5, 2, -1}, {0, 0, 0, 1, 4, 10}, 40] (* Jean-François Alcover, May 11 2019 *)
Formula
G.f.: z^3/(1-2*z+z^2-z^3)^2.
Comments