This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118433 #19 May 18 2024 06:11:51 %S A118433 1,1,-1,-1,2,1,-1,3,3,-1,1,-4,-6,4,1,1,-5,-10,10,5,-1,-1,6,15,-20,-15, %T A118433 6,1,-1,7,21,-35,-35,21,7,-1,1,-8,-28,56,70,-56,-28,8,1,1,-9,-36,84, %U A118433 126,-126,-84,36,9,-1,-1,10,45,-120,-210,252,210,-120,-45,10,1 %N A118433 Self-inverse triangle H, read by rows; a nontrivial matrix square-root of identity: H^2 = I, where H(n,k) = C(n,k)*(-1)^(floor((n+1)/2) - floor(k/2) + n - k) for n >= k >= 0. %C A118433 There are an infinite number of integer square-roots of the identity matrix. %F A118433 E.g.f.: A(x,y) = cos(x)*exp(-x*y) + sin(x)*exp(x*y). %F A118433 O.g.f.: A(x,y) = (1 + x*(1-y) + x^2*(1+2*y-y^2) + x^3*(1+y+y^2+y^3)) / (1 + 2*x^2*(1-y^2) + x^4*(1+y^2)^2). %e A118433 Triangle H begins: %e A118433 1; %e A118433 1, -1; %e A118433 -1, 2, 1; %e A118433 -1, 3, 3, -1; %e A118433 1, -4, -6, 4, 1; %e A118433 1, -5, -10, 10, 5, -1; %e A118433 -1, 6, 15, -20, -15, 6, 1; %e A118433 -1, 7, 21, -35, -35, 21, 7, -1; %e A118433 1, -8, -28, 56, 70, -56, -28, 8, 1; %e A118433 1, -9, -36, 84, 126, -126, -84, 36, 9, -1; %e A118433 -1, 10, 45, -120, -210, 252, 210, -120, -45, 10, 1; ... %e A118433 G.f.s for columns: %e A118433 k=0: (x + 1)/(1+x^2); %e A118433 k=1: (x^2 + 2*x - 1)/(1+x^2)^2; %e A118433 k=2: (-x^3 - 3*x^2 + 3*x + 1)/(1+x^2)^3; %e A118433 k=3: (-x^4 - 4*x^3 + 6*x^2 + 4*x - 1)/(1+x^2)^4; %e A118433 k=4: (x^5 + 5*x^4 - 10*x^3 - 10*x^2 + 5*x + 1)/(1+x^2)^5; %e A118433 k=5: (x^6 + 6*x^5 - 15*x^4 - 20*x^3 + 15*x^2 + 6*x - 1)/(1+x^2)^6. %e A118433 The g.f. of column k is thus: %e A118433 G_k(x) = (Sum_{j=0..k+1} -H(k+1,j)*(-x)^(k+1-j))/(1+x^2)^(k+1). %e A118433 The triangle formed from above polynomial numerators of column g.f.s is described by the e.g.f.: cos(x*y)*exp(-x) - sin(x*y)*exp(x). %t A118433 H[n_, k_] := Binomial[n, k]*(-1)^(Quotient[n+1, 2]-Quotient[k, 2]+n-k); %t A118433 Table[H[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 08 2024 *) %o A118433 (PARI) {H(n,k)=binomial(n,k)*(-1)^((n+1)\2-k\2+n-k)} %o A118433 for(n=0,12,for(k=0,n,print1(H(n,k),", "));print("")) %o A118433 (PARI) /* Using E.G.F.: */ %o A118433 {H(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k));n!*polcoeff(polcoeff( cos(x)*exp(-x*y)+sin(x)*exp(x*y),n,X),k,Y)} %o A118433 for(n=0,12,for(k=0,n,print1(H(n,k),", "));print("")) %o A118433 (PARI) /* Using O.G.F.: */ %o A118433 {H(n,k)=polcoeff(polcoeff((1+x*(1-y)+x^2*(1+2*y-y^2)+x^3*(1+y+y^2+y^3))/(1+2*x^2*(1-y^2)+x^4*(1+y^2)^2+x*O(x^n)+y*O(y^k)),n,x),k,y)} %o A118433 for(n=0,12,for(k=0,n,print1(H(n,k),", "));print("")) %Y A118433 Cf. A118434 (row sums), A118435 (H*[C^-1]*H). %K A118433 sign,tabl %O A118433 0,5 %A A118433 _Paul D. Hanna_, Apr 28 2006