cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118441 Triangle L, read by rows, equal to the matrix log of A118435, with the property that L^2 consists of a single diagonal (two rows down from the main diagonal).

This page as a plain text file.
%I A118441 #23 Apr 08 2024 09:13:15
%S A118441 0,1,0,-4,2,0,-12,12,3,0,32,-48,-24,4,0,80,-160,-120,40,5,0,-192,480,
%T A118441 480,-240,-60,6,0,-448,1344,1680,-1120,-420,84,7,0,1024,-3584,-5376,
%U A118441 4480,2240,-672,-112,8,0,2304,-9216,-16128,16128,10080,-4032,-1008,144,9,0
%N A118441 Triangle L, read by rows, equal to the matrix log of A118435, with the property that L^2 consists of a single diagonal (two rows down from the main diagonal).
%C A118441 L = log(A118435) = log(H*[C^-1]*H], where C=Pascal's triangle and H=A118433 where H^2 = I (identity matrix).
%F A118441 For even exponents of L, L^(2m) is a single diagonal:
%F A118441 if n == k+2m, then [L^(2m)](n,k) = n!/k!*2^(n-k-2m)/(n-k-2m)!; else if n != k+2m: [L^(2m)](n,k) = 0.
%F A118441 For odd exponents of L:
%F A118441 if n >= k+2m+1, then [L^(2m+1)](n,k) = n!/k!*2^(n-k-2m-1)/(n-k-2m-1)!*(-1)^(m+[(n+1)/2]-[k/2]+n-k); else if n < k+2m+1: [L^(2m)](n,k) = 0.
%F A118441 Unsigned row sums equals A027471(n+1) = n*3^(n-1).
%e A118441 The matrix log, L = log(H*[C^-1]*H], begins:
%e A118441      0;
%e A118441      1,     0;
%e A118441     -4,     2,      0;
%e A118441    -12,    12,      3,     0;
%e A118441     32,   -48,    -24,     4,     0;
%e A118441     80,  -160,   -120,    40,     5,     0;
%e A118441   -192,   480,    480,  -240,   -60,     6,     0;
%e A118441   -448,  1344,   1680, -1120,  -420,    84,     7,   0;
%e A118441   1024, -3584,  -5376,  4480,  2240,  -672,  -112,   8,  0;
%e A118441   2304, -9216, -16128, 16128, 10080, -4032, -1008, 144,  9,  0;
%e A118441   ...
%e A118441 The matrix square, L^2, is a single diagonal:
%e A118441   0;
%e A118441   0, 0;
%e A118441   2, 0,  0;
%e A118441   0, 6,  0,  0;
%e A118441   0, 0, 12,  0,  0;
%e A118441   0, 0,  0, 20,  0,  0;
%e A118441   0, 0,  0,  0, 30,  0,  0;
%e A118441   ...
%e A118441 From _Peter Luschny_, Apr 23 2020: (Start)
%e A118441 In unsigned form and without the main diagonal, as computed by the Maple script:
%e A118441   [0], [0]
%e A118441   [1], [1]
%e A118441   [2], [4,   2]
%e A118441   [3], [12,  12,   3]
%e A118441   [4], [32,  48,   24,   4]
%e A118441   [5], [80,  160,  120,  40,   5]
%e A118441   [6], [192, 480,  480,  240,  60,  6]
%e A118441   [7], [448, 1344, 1680, 1120, 420, 84, 7] (End)
%p A118441 # Generalized Worpitzky transform of the harmonic numbers.
%p A118441 CL := p -> PolynomialTools:-CoefficientList(expand(p), x):
%p A118441 H := n -> add(1/k, k=1..n):
%p A118441 Trow := proc(n) local k,v; if n=0 then return [0] fi;
%p A118441 add(add((-1)^(n-v)*binomial(k,v)*H(k)*(-x+v-1)^n, v=0..k), k=0..n); CL(%) end:
%p A118441 for n from 0 to 7 do Trow(n) od; # _Peter Luschny_, Apr 23 2020
%t A118441 nmax = 12;
%t A118441 h[n_, k_] := Binomial[n, k]*(-1)^(Quotient[n+1, 2] - Quotient[k, 2]+n-k);
%t A118441 H = Table[h[n, k], {n, 0, nmax}, {k, 0, nmax}];
%t A118441 Cn = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, nmax}];
%t A118441 L = MatrixLog[H.Inverse[Cn].H ];
%t A118441 Table[L[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 08 2024 *)
%o A118441 (PARI) /* From definition of L as matrix log of H*C^-1*H: */
%o A118441 {L(n,k)=local(H=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1)*(-1)^(r\2-(c-1)\2+r-c))),C=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1))),N=(H*C^-1*H)); Log=sum(p=1,n+1,-(N^0-N)^p/p);Log[n+1,k+1]}
%o A118441 for(n=0, 10, for(k=0, n, print1(L(n, k), ", ")); print(""))
%o A118441 (PARI) /* The matrix power L^m is given by: */
%o A118441 {L(n,k,m)=if(m%2==0,if(n==k+m,n!/k!*2^(n-k-m)/(n-k-m)!), if(n>=k+m,n!/k!*2^(n-k-m)/(n-k-m)!*(-1)^(m\2+(n+1)\2-k\2+n-k)))}
%o A118441 for(n=0, 10, for(k=0, n, print1(L(n, k,1), ", ")); print(""))
%Y A118441 Cf. A118435 (exp(L)), A118442 (column 0), A118443 (row sums), A027471 (unsigned row sums); A118433 (self-inverse triangle), A001815 (column 1?), A001789 (third of column 2?).
%K A118441 sign,tabl
%O A118441 0,4
%A A118441 _Paul D. Hanna_, Apr 28 2006