cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118462 Decimal equivalent of binary encoding of partitions into distinct parts.

This page as a plain text file.
%I A118462 #41 May 23 2024 21:14:31
%S A118462 0,1,2,3,4,5,8,6,9,16,7,10,17,32,11,12,18,33,64,13,19,20,34,65,128,14,
%T A118462 21,24,35,36,66,129,256,15,22,25,37,40,67,68,130,257,512,23,26,38,41,
%U A118462 48,69,72,131,132,258,513,1024,27,28,39,42,49,70,73,80,133,136,259,260,514
%N A118462 Decimal equivalent of binary encoding of partitions into distinct parts.
%C A118462 A part of size k in the partition makes the 2^(k-1) bit of the number be 1. The partitions of n are in reverse Mathematica ordering, so that each row is in ascending order. This is a permutation of the nonnegative integers.
%C A118462 The sequence is the concatenation of the sets: e_n={j>=0: A029931(j)=n}, n=0,1,...: e_0={0}, e_1={1}, e_2={2}, e_3={3,4}, e_4={5,8}, e_5={6,9,16}, e_6={7,10,17,32}, e_7={11,12,18.33.64}, ... . - _Vladimir Shevelev_, Mar 16 2009
%C A118462 This permutation of the nonnegative integers A001477 has fixed points 0, 1, 2, 3, 4, 5, 325, 562, 800, 4449, ... and inverse permutation A118463. - _Alois P. Heinz_, Sep 06 2014
%C A118462 Row n lists in increasing order the binary ranks of all strict integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). - _Gus Wiseman_, May 21 2024
%H A118462 Alois P. Heinz, <a href="/A118462/b118462.txt">Rows n = 0..42, flattened</a>
%H A118462 V. Shevelev, <a href="http://arXiv.org/abs/0903.1743">A recursion for divisor function over divisors belonging to a prescribed finite sequence of positive integers and a solution of the Lahiri problem for divisor function sigma_x(n)</a>, arXiv:0903.1743 [math.NT], 2009. [From _Vladimir Shevelev_, Mar 17 2009]
%H A118462 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A118462 Partition 11 is [4,2], which gives binary 1010 (2^(4-1)+2^(2-1)), or 10, so a(11)=10.
%e A118462 Triangle begins:
%e A118462    0;
%e A118462    1;
%e A118462    2;
%e A118462    3,  4;
%e A118462    5,  8;
%e A118462    6,  9, 16;
%e A118462    7, 10, 17, 32;
%e A118462   11, 12, 18, 33, 64;
%e A118462   13, 19, 20, 34, 65, 128;
%e A118462   14, 21, 24, 35, 36,  66, 129, 256;
%e A118462   15, 22, 25, 37, 40,  67,  68, 130, 257, 512;
%e A118462   ...
%e A118462 From _Gus Wiseman_, May 21 2024: (Start)
%e A118462 The tetrangle of strict partitions (A118457) begins:
%e A118462   (1)  (2)  (2,1)  (3,1)  (3,2)  (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)
%e A118462             (3)    (4)    (4,1)  (4,2)    (4,3)    (5,2,1)  (5,3,1)
%e A118462                           (5)    (5,1)    (5,2)    (5,3)    (5,4)
%e A118462                                  (6)      (6,1)    (6,2)    (6,2,1)
%e A118462                                           (7)      (7,1)    (6,3)
%e A118462                                                    (8)      (7,2)
%e A118462                                                             (8,1)
%e A118462                                                             (9)
%e A118462 (End)
%p A118462 b:= proc(n, i) option remember; `if`(n=0, [0], `if`(i<1, [], [seq(
%p A118462       map(p->p+2^(i-1)*j, b(n-i*j, i-1))[], j=0..min(1, n/i))]))
%p A118462     end:
%p A118462 T:= n-> sort(b(n$2))[]:
%p A118462 seq(T(n), n=0..14);  # _Alois P. Heinz_, Sep 06 2014
%t A118462 b[n_, i_] := b[n, i] = If[n==0, {0}, If[i<1, {}, Flatten[Table[b[n-i*j, i-1 ] + 2^(i-1)*j, {j, 0, Min[1, n/i]}]]]]; T[n_] := Sort[b[n, n]]; Table[ T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 27 2015, after _Alois P. Heinz_ *)
%t A118462 Table[Total[2^(#-1)]&/@Select[Reverse[IntegerPartitions[n]],UnsameQ@@#&],{n,0,10}] (* _Gus Wiseman_, May 21 2024 *)
%Y A118462 Cf. A118463, A118457, A000009 (row lengths).
%Y A118462 Cf. A089633 (first column), A000079 (last in each column). - _Franklin T. Adams-Watters_, Mar 16 2009
%Y A118462 Cf. A246867.
%Y A118462 A variation encoding all partitions is A225620.
%Y A118462 Row sums are A372888.
%Y A118462 A048793 lists binary indices, sum A029931, length A000120.
%Y A118462 Cf. A000041, A019565, A029837, A048675, A272020.
%K A118462 base,nonn,tabf,look
%O A118462 0,3
%A A118462 _Franklin T. Adams-Watters_, Apr 28 2006