This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118575 #22 May 28 2020 17:28:07 %S A118575 1,2,3,4,5,6,7,8,9,12,24,111,112,132,135,144,216,312,315,432,612,624, %T A118575 1116,1212,1344,1416,2112,2232,3168,3312,4112,4224,6624,8112,11112, %U A118575 11115,11133,11172,11232,11313,11331,11424,11664,12132,12216,12312,12432 %N A118575 Dividuus numbers: numbers which are divisible by (1) the sum of their digits,(2) the product of their digits,(3) the digital root and (4) the multiplicative digital root. %C A118575 Dividuus : Latin for "divisible" Most of these numbers are even, but there are some odd numbers too. However, none of them seem to end on 7 (except for the obvious number 7 itself). Are there numbers in the sequence ending in 7? %H A118575 Chai Wah Wu, <a href="/A118575/b118575.txt">Table of n, a(n) for n = 1..2639</a> %e A118575 624 is in the sequence because (1) the sum of its digits is 6+4+2=12, (2) the product of its digits is 6*4*2=48, (3) the digital root is 3, (4) the multiplicative digital root is 6 and 624 is divisible by 12,48,3 and 6. %p A118575 filter:= proc(n) %p A118575 local L, s,p; %p A118575 L:= convert(n,base,10); %p A118575 s:= convert(L,`+`); %p A118575 if n mod s <> 0 then return false fi; %p A118575 p:= convert(L,`*`); %p A118575 if p = 0 or n mod p <> 0 then return false fi; %p A118575 while s > 10 do %p A118575 s:= convert(convert(s,base,10),`+`); %p A118575 od: %p A118575 if n mod s <> 0 then return false fi; %p A118575 while p > 10 do %p A118575 p:= convert(convert(p, base, 10),`*`); %p A118575 od: %p A118575 p > 0 and n mod p = 0; %p A118575 end proc: %p A118575 select(filter, [$1..10^4]); # _Robert Israel_, Aug 24 2014 %o A118575 (Python) %o A118575 from operator import mul %o A118575 from functools import reduce %o A118575 from gmpy2 import t_mod, mpz %o A118575 def A031347(n): %o A118575 while n > 9: %o A118575 n = reduce(mul, (int(d) for d in str(n))) %o A118575 return n %o A118575 A118575 = [n for n in range(1, 10**9) if A031347(n) and not %o A118575 (str(n).count('0') or t_mod(n, (1+t_mod((n-1), 9))) or %o A118575 t_mod(n, A031347(n)) or t_mod(n,sum((mpz(d) for d in str(n)))) %o A118575 or t_mod(n, reduce(mul,(mpz(d) for d in str(n)))))] %o A118575 # _Chai Wah Wu_, Aug 26 2014 %Y A118575 Cf. A007953 (sum of digits), A007954 (product of digits), A010888 (digital root), A031347 (multiplicative digital root). %Y A118575 Intersection of A038186 and A064700 and A064807. %Y A118575 Subsequence of A005349, A007602, A038186, A064700, A064807. %K A118575 base,nonn %O A118575 1,2 %A A118575 Luc Stevens (lms022(AT)yahoo.com), May 07 2006 %E A118575 Inserted a(17)=216 by _Chai Wah Wu_, Aug 24 2014