This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118588 #4 Mar 30 2012 18:36:57 %S A118588 1,1,1,2,1,12,1,36,12,1,80,180,1,150,1260,120,1,252,5460,3360,1,392, %T A118588 17640,43680,1680,1,576,46872,342720,75600,1,810,108360,1839600, %U A118588 1587600,30240,1,1100,225720,7539840,20235600,1995840,1,1452,433620,25391520 %N A118588 Triangle generated by e.g.f.: A(x,y) = exp(x + y*(x^2+x^3)), read by rows of length [n/2+1]. %C A118588 E.g.f. V(x) of eigenvector A119013 satisfies: V(x) = exp(x)*V(x^2+x^3); note the similarity to e.g.f. of this triangle. %e A118588 Triangle begins: %e A118588 1; %e A118588 1; %e A118588 1,2; %e A118588 1,12; %e A118588 1,36,12; %e A118588 1,80,180; %e A118588 1,150,1260,120; %e A118588 1,252,5460,3360; %e A118588 1,392,17640,43680,1680; %e A118588 1,576,46872,342720,75600; ... %e A118588 O.g.f. for columns: %e A118588 0!/0!*(1)/(1-x); %e A118588 2!/1!*(1+2*x)/(1-x)^4; %e A118588 4!/2!*(1+8*x+21*x^2)/(1-x)^7; %e A118588 6!/3!*(1+18*x+129*x^2+356*x^3)/(1-x)^10; %e A118588 8!/4!*(1+32*x+438*x^2+2984*x^3+8425*x^4)/(1-x)^13; ... %o A118588 (PARI) {T(n,k)=n!*polcoeff(polcoeff(exp(x+y*(x^2+x^3)+x*O(x^n)+y*O(y^k)),n,x),k,y)} %Y A118588 Cf. A118589 (row sums), A119013 (eigenvector). %K A118588 nonn,tabl %O A118588 0,4 %A A118588 _Paul D. Hanna_, May 08 2006