cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118694 Semiprimes which are divisible by the product of their digits.

This page as a plain text file.
%I A118694 #16 Aug 22 2015 19:58:23
%S A118694 4,6,9,15,111,115,1111,1115,11111,1111111,1111117,111111115,
%T A118694 1111113111,1111711111,11111111111,111111111115,1111111111113,
%U A118694 1111117111111,11171111111111,1111111111711111,1111711111111111,11111111111111111
%N A118694 Semiprimes which are divisible by the product of their digits.
%C A118694 The Mathematica coding is only good for multidigital, nonrepunits numbers. Obviously 4, 6 and 9 are members and so are A102782: Repunit semiprimes. - _Robert G. Wilson v_, Jun 10 2006
%H A118694 Alois P. Heinz, <a href="/A118694/b118694.txt">Table of n, a(n) for n = 1..100</a>
%F A118694 a(n) = A001358(k): A007954(a(n)) | a(n). - _R. J. Mathar_, May 23 2006
%e A118694 115 is in the sequence because (1) it is a semiprime, (2) the product of its digits is 1*1*5=5 and (3) 115 is divisible by 5.
%p A118694 sp:= proc(n) evalb(2=add (i[2], i=ifactors(n) [2])) end: dp:= proc(n) local m; m:=n; 1; while m<>0 do %*irem(m, 10, 'm') od; % end: select(x-> irem(x, dp(x))=0 and sp(x), sort([{4, 6, 9, seq(seq(seq(parse(cat(1$(k-j), t, 1$j)), j=0..k), t=[1, 3, 5, 7]), k=1..20)} []]))[]; # _Alois P. Heinz_, Nov 17 2009
%t A118694 lst = {}; Do[ p = Times @@ IntegerDigits@n; If[ PrimeQ@p && PrimeQ[n/p], AppendTo[lst, n]; Print[n]], {n, 275*10^6}]; lst (* _Robert G. Wilson v_, Jun 10 2006 *)
%o A118694 (PARI) A007954(n)= { local(resul,ncpy); if(n<10, return(n) ); ncpy=n; resul = ncpy % 10; ncpy = (ncpy - ncpy%10)/10; while( ncpy > 0, resul *= ncpy %10; ncpy = (ncpy - ncpy%10)/10; ); return(resul); } { for(n=4,50000000, if( bigomega(n)==2, dr=A007954(n); if(dr !=0 && n % dr == 0, print1(n,","); ); ); ); } \\ _R. J. Mathar_, May 23 2006
%Y A118694 Cf. A001358, A102782, A046413, A118693.
%K A118694 base,nonn
%O A118694 1,1
%A A118694 Luc Stevens (lms022(AT)yahoo.com), May 20 2006
%E A118694 More terms from _R. J. Mathar_, May 23 2006
%E A118694 a(12) from _Robert G. Wilson v_, Jun 10 2006
%E A118694 Further terms from _Alois P. Heinz_, Nov 17 2009