cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A177147 a(n) = determinant of n X n circulant matrix whose first row consists of the first n positive triangular numbers.

Original entry on oeis.org

1, -8, 190, -8880, 683375, -78206688, 12452171844, -2631354777600, 712425472573815, -240455417915625000, 98981390235327670642, -48810267466347374088192, 28406348214047496113497895, -19264981823338548859573191040, 15061032335471422549306640625000
Offset: 1

Views

Author

Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 03 2010

Keywords

Examples

			a(4) = determinant of 4 X 4 matrix
| 1,  3,  6, 10|
|10,  1,  3,  6|
| 6, 10,  1,  3|
| 3,  6, 10,  1|
= -8880.
		

Crossrefs

Cf. A118705.

Programs

  • Mathematica
    tri[n_] := n (n + 1)/2; f[n_] := Det[ Table[ RotateLeft[ tri@ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 15] (* or *)
    f[n_] := (-1)^n*n^(n - 2)(n + 1)(n + 2)((n + 1)^n - (n + 3)^n)/(3*2^(n + 1)); Array[f, 15]  (* Robert G. Wilson v, Aug 31 2014 *)
  • PARI
    A177147(n)={ (-1)^(n-1)*n^(n-2)*(n+1)*(n+2)*((n+3)^n-(n+1)^n)/(6*2^n) ; }
    { for(n=1,20, print1(A177147(n)",") ; ) ; } \\ R. J. Mathar, May 28 2010

Formula

a(n) = (-1)^(n-1)*n^(n-2)*(n+1)*(n+2)*((n+3)^n-(n+1)^n)/(6*2^n).

Extensions

More terms from R. J. Mathar, May 28 2010
Two more terms from Robert G. Wilson v, Aug 31 2014
Showing 1-1 of 1 results.