A118778 Total degree of the classical modular curve X_n(0). Also the degree of the classical modular polynomial.
1, 4, 6, 9, 10, 18, 14, 20, 20, 30, 22, 38, 26, 42, 40, 42, 34, 62, 38, 60, 56, 66, 46, 82, 54, 78, 66, 84, 58, 122, 62, 88, 88, 102, 84, 126, 74, 114, 104, 126, 82, 168, 86, 132, 128, 138, 94, 172, 104, 166, 136, 156, 106, 198, 132, 170, 152, 174, 118, 254, 122, 186, 172
Offset: 1
References
- Serge Lang, ''Elliptic Functions'', Addison-Wesley, 1973.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): degx := proc (n) # degree of the classical modular curve X0(n) local a, s; s := 0; for a in divisors(n) do if a^2 > n then s := s + 2*a*phi(igcd(a, n/a))/igcd(a, n/a) fi od; if issqr(n) then s := s+phi(sqrt(n)) fi; s end:
-
Mathematica
degx[n_] := Module[{s = 0}, Do[ If[ a^2 > n, s = s + 2*a*EulerPhi[ GCD[a, n/a]] / GCD[a, n/a]], {a, Divisors[n]}]; If[ IntegerQ[ Sqrt[n]], s = s + EulerPhi[ Sqrt[n] ] ]; s]; Table[ degx[n], {n, 1, 63}] (* Jean-François Alcover, Jan 29 2013, translated from Maple *)
-
PARI
a(n)=2*sumdiv(n,d,if(d^2>n, my(g=gcd(d,n/d)); d*eulerphi(g)/g)) + if(issquare(n,&n),eulerphi(n)) \\ Charles R Greathouse IV, Jan 29 2013
Comments