This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118781 #11 Nov 29 2015 13:44:29 %S A118781 -196,272,-251,149,-423,909,-408,-452,958,-123,-112,-460,84,-271,-187, %T A118781 -162,63,7,101,-483,-133,205,-860,-46,339,1178,848,366,1084,719,-384, %U A118781 334,-2736,-984,-1912,214,34,40,-1735,-60,64,-2263,-3468,5795,69,132,3007,256,2130,3428 %N A118781 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive semiprimes. %C A118781 Semiprime analog of A117330 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive primes. The terminology "continuous" is used to distinguish from "discrete" which would be (in this 3 X 3 semiprime case) block 1: 4, 6, 9, 10, 14, 15, 21, 22, 25; block 2: 26, 33, 34, 35, 38, 39, 46, 49, 51; and so forth. %F A118781 a(n) = s(n)*s(n+4)*s(n+8) - s(n)*s(n+5)*s(n+7) - s(n+1)*s(n+3)*s(n+8) + s(n+1)*s(n+5)*s(n+6) + s(n+2)*s(n+3)*s(n+7) - s(n+2)*s(n+4)*s(n+6) where s(n) = A001358(n) is the n-th semiprime. %e A118781 a(1) = -196 because the determinant of the first continuous block of 9 semiprimes is: %e A118781 | 4. 6. 9.| %e A118781 |10. 14. 15.| %e A118781 |21. 22. 25.|. %e A118781 a(9) = 958 because the determinant of the 9th continuous block of 9 semiprimes is: %e A118781 |25. 26. 33.| %e A118781 |34. 35. 38.| %e A118781 |39. 46. 49.|. %e A118781 a(50) = 3428 because the determinant of the 50th continuous block of 9 semiprimes is: %e A118781 |146. 155. 158.| %e A118781 |159. 161. 166.| %e A118781 |169. 177. 178.|. %p A118781 A118781 := proc(n) %p A118781 local A,i,r,c ; %p A118781 A := Matrix(3,3) ; %p A118781 i := n ; %p A118781 for r from 1 to 3 do %p A118781 for c from 1 to 3 do %p A118781 A[r,c] := A001358(i) ; %p A118781 i := i+1 ; %p A118781 end do: %p A118781 end do: %p A118781 LinearAlgebra[Determinant](A) ; %p A118781 end proc: # _R. J. Mathar_, May 05 2013 %t A118781 Det/@(Partition[#,3]&/@(Partition[Select[Range[200],PrimeOmega[ #] == 2&],9,1])) (* _Harvey P. Dale_, Nov 29 2015 *) %Y A118781 Cf. A001358, A067276, A117301, A118713. %K A118781 easy,sign %O A118781 1,1 %A A118781 _Jonathan Vos Post_, May 22 2006