This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118787 #3 Mar 30 2012 18:36:57 %S A118787 1,1,1,2,3,5,6,12,23,41,24,60,130,255,469,120,360,870,1860,3679,6889, %T A118787 720,2520,6720,15540,32858,65247,123605,5040,20160,58800,146160, %U A118787 328734,689388,1371887,2620169,40320,181440,574560,1527120,3638376,8029980 %N A118787 Triangle where T(n,k) = n!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows. %C A118787 Row sums are A112487. Main diagonal is A032188(n) = number of labeled series-reduced mobiles (circular rooted trees) with n leaves. %F A118787 Main diagonal has e.g.f.: series_reversion[2*x+log(1-x)]. %e A118787 Triangle begins: %e A118787 1; %e A118787 1, 1; %e A118787 2, 3, 5; %e A118787 6, 12, 23, 41; %e A118787 24, 60, 130, 255, 469; %e A118787 120, 360, 870, 1860, 3679, 6889; %e A118787 720, 2520, 6720, 15540, 32858, 65247, 123605; %e A118787 5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169; ... %e A118787 Triangle is formed from powers of F(x) = x/(2*x + log(1-x)): %e A118787 F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +... %e A118787 F(x)^2 = (1 + x)/1! +17/12*x^2 + 2*x^3 + 671/240*x^4 ... %e A118787 F(x)^3 = (2 + 3*x + 5*x^2)/2! + 4*x^3 + 1489/240*x^4 +... %e A118787 F(x)^4 = (6 + 12*x + 23*x^2 + 41/6*x^3)/3! + 8351/720*x^4 +... %e A118787 F(x)^5 = (24 + 60*x + 130*x^2 + 255*x^3 + 469*x^4)/4! +... %o A118787 (PARI) {T(n,k)=local(x=X+X^2*O(X^(k+2)));n!*polcoeff((x/(2*x+log(1-x)))^(n+1),k,X)} %Y A118787 Cf. A118788, A112487, A032188. %K A118787 nonn,tabl %O A118787 0,4 %A A118787 _Paul D. Hanna_, Apr 29 2006