cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118806 Triangle read by rows: T(n,k) is the number of partitions of n having k parts of multiplicity 3 (n,k>=0).

Original entry on oeis.org

1, 1, 2, 2, 1, 5, 6, 1, 9, 2, 12, 3, 19, 3, 24, 5, 1, 34, 8, 43, 13, 62, 13, 2, 77, 23, 1, 105, 28, 2, 132, 40, 4, 177, 49, 5, 220, 71, 6, 287, 89, 8, 1, 356, 123, 11, 462, 147, 18, 570, 198, 23, 1, 723, 249, 29, 1, 888, 329, 37, 1, 1121, 400, 50, 4, 1370, 518, 69, 1, 1705, 642, 85
Offset: 0

Views

Author

Emeric Deutsch, Apr 29 2006

Keywords

Comments

T(n,0)=A118807(n). T(n,1)=A118808(n). Row sums yield the partition numbers (A000041). Sum(k*T(n,k), k>=0)=A117524(n) (n>=1).

Examples

			T(12,2) = 2 because we have [3,3,3,1,1,1] and [3,2,2,2,1,1,1].
Triangle starts:
1;
1;
2;
2,  1;
5;
6,  1;
9,  2;
12, 3;
		

Crossrefs

Programs

  • Maple
    g:=product(1+x^j+x^(2*j)+t*x^(3*j)+x^(4*j)/(1-x^j),j=1..35): gser:=simplify(series(g,x=0,35)): P[0]:=1: for n from 1 to 30 do P[n]:=coeff(gser,x^n) od: for n from 0 to 30 do seq(coeff(P[n],t,j),j=0..degree(P[n])) od; # sequence given in triangular form

Formula

G.f.: product(1+x^j+x^(2j)+tx^(3j)+x^(4j)/(1-x^j), j=1..infinity).