cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118808 Number of partitions of n having exactly one part with multiplicity 3.

This page as a plain text file.
%I A118808 #7 Nov 21 2013 12:48:58
%S A118808 0,0,0,1,0,1,2,3,3,5,8,13,13,23,28,40,49,71,89,123,147,198,249,329,
%T A118808 400,518,642,825,996,1265,1545,1941,2340,2920,3533,4357,5233,6417,
%U A118808 7717,9399,11211,13591,16215,19540,23189,27826,32990,39392,46504,55313,65200
%N A118808 Number of partitions of n having exactly one part with multiplicity 3.
%C A118808 Column 1 of A118806.
%F A118808 G.f.=product([1-x^(3j)+x^(4j)]/(1-x^j), j=1..infinity)*sum(x^(3j)*(1-x^j)/[1-x^(3j)+x^(4j)], j=1..infinity).
%e A118808 a(9)=5 because we have [6,1,1,1],[4,2,1,1,1],[3,3,3],[3,3,1,1,1] and [3,2,2,2].
%p A118808 g:=product((1-x^(3*j)+x^(4*j))/(1-x^j),j=1..70)*sum(x^(3*j)*(1-x^j)/(1-x^(3*j)+x^(4*j)),j=1..70): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..60);
%t A118808 Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#], 3]==1&]],{n,0,60}]  (* _Harvey P. Dale_, Mar 24 2011 *)
%Y A118808 Cf. A118806, A118807, A116596.
%K A118808 nonn
%O A118808 0,7
%A A118808 _Emeric Deutsch_, Apr 29 2006