cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118811 Decimal expansion of arc length of the (first) butterfly curve.

This page as a plain text file.
%I A118811 #27 Feb 16 2025 08:33:01
%S A118811 9,0,1,7,3,5,6,9,8,5,6,5,4,6,9,7,6,9,1,8,6,0,9,6,3,4,0,2,9,7,0,0,7,7,
%T A118811 0,0,3,9,3,0,5,9,7,1,8,6,1,3,0,9,8,0,1,9,8,9,3,4,3,3,8,3,3,7,6,1,7,1,
%U A118811 5,4,4,6,8,0,2,0,3,4,6,9,4,5,5,7,2,9,6,9,7,0,5,9,3,1,0,3,5,8,6
%N A118811 Decimal expansion of arc length of the (first) butterfly curve.
%H A118811 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ButterflyCurve.html">Butterfly Curve</a>
%e A118811 9.0173569856546976918...
%t A118811 eq = y^6 == x^2-x^6; f[x_] = y /. Solve[eq, y][[2]]; g[y_] = x /. Solve[eq, x][[2]]; h[y_] = x /. Solve[eq, x][[4]]; x1 = 3/8; y1 = f[x1]; x2 = 7/8; y2 = f[x2]; ni[a_, b_] := NIntegrate[a, b, WorkingPrecision -> 120]; i1 = ni[Sqrt[1+f'[x]^2], {x, x1, x2}]; i2 = ni[Sqrt[1+g'[y]^2], {y, 0, y2}]; i3 = ni[Sqrt[1+h'[y]^2], {y, 0, y1}]; Take[RealDigits[4(i1+i2+i3)][[1]], 99](* _Jean-François Alcover_, Jan 19 2012 *)
%o A118811 (PARI) 4*intnum(x=0,1,sqrt(1+(x/3-x^5)^2/(x^2-x^6)^(5/3))) \\ _Charles R Greathouse IV_, Jan 17 2012
%Y A118811 Cf. A118292.
%K A118811 nonn,cons
%O A118811 1,1
%A A118811 _Eric W. Weisstein_, Apr 30 2006
%E A118811 Last digit corrected by _Eric W. Weisstein_, Jan 18 2012