This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118825 #38 Aug 04 2025 07:31:46 %S A118825 -2,-1,0,-1,2,1,0,1,-2,-1,0,-1,2,1,0,1,-2,-1,0,-1,2,1,0,1,-2,-1,0,-1, %T A118825 2,1,0,1,-2,-1,0,-1,2,1,0,1,-2,-1,0,-1,2,1,0,1,-2,-1,0,-1,2,1,0,1,-2, %U A118825 -1,0,-1,2,1,0,1,-2,-1,0,-1,2,1,0,1,-2,-1,0,-1,2,1 %N A118825 Numerators of the convergents of the 2-adic continued fraction of zero given by A118824. %H A118825 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,-1). %F A118825 Period 8 sequence: [ -2,-1,0,-1,2,1,0,1]. %F A118825 G.f.: -x*(1+x)*(x^2-x+2) / ( 1+x^4 ). %F A118825 a(n) = sqrt((n+1)^2 mod 8)*(-1)^floor((n+3)/4). - _Wesley Ivan Hurt_, Jan 04 2014 %e A118825 For n>=1, convergents A118825(k)/A118826(k) are: %e A118825 at k = 4*n: 1/A080277(n); %e A118825 at k = 4*n+1: 2/(2*A080277(n)-1); %e A118825 at k = 4*n+2: 1/(A080277(n)-1); %e A118825 at k = 4*n-1: 0/(-1)^n. %e A118825 Convergents begin: %e A118825 -2/1, -1/1, 0/-1, -1/-1, 2/1, 1/0, 0/1, 1/4, %e A118825 -2/-7, -1/-3, 0/-1, -1/-5, 2/9, 1/4, 0/1, 1/12, %e A118825 -2/-23, -1/-11, 0/-1, -1/-13, 2/25, 1/12, 0/1, 1/16, %e A118825 -2/-31, -1/-15, 0/-1, -1/-17, 2/33, 1/16, 0/1, 1/32, ... %p A118825 A118825:=n->sqrt((n+1)^2 mod 8))*(-1)^floor((n+3)/4); seq(A118825(n), n=1..100); # _Wesley Ivan Hurt_, Jan 04 2014 %t A118825 Table[Sqrt[Mod[(n+1)^2, 8]](-1)^Floor[(n+3)/4], {n, 100}] (* _Wesley Ivan Hurt_, Jan 04 2014 *) %t A118825 PadRight[{},120,{-2,-1,0,-1,2,1,0,1}] (* _Harvey P. Dale_, May 26 2020 *) %o A118825 (PARI) {a(n)=local(p=-2,q=+1,v=vector(n,i,if(i%2==1,p,q*2^valuation(i/2,2)))); contfracpnqn(v)[1,1]} %Y A118825 Cf. A118824 (partial quotients), A118826 (denominators), A118822, A230075 (start with a(5)). %K A118825 frac,sign,easy %O A118825 1,1 %A A118825 _Paul D. Hanna_, May 01 2006