This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118882 #24 Sep 11 2022 00:40:01 %S A118882 25,50,65,85,100,125,130,145,169,170,185,200,205,221,225,250,260,265, %T A118882 289,290,305,325,338,340,365,370,377,400,410,425,442,445,450,481,485, %U A118882 493,500,505,520,530,533,545,565,578,580,585,610,625,629,650,676,680 %N A118882 Numbers which are the sum of two squares in two or more different ways. %C A118882 Numbers whose prime factorization includes at least two primes (not necessarily distinct) congruent to 1 mod 4 and any prime factor congruent to 3 mod 4 has even multiplicity. Products of two values in A004431. %C A118882 Squares of distances that are the distance between two points in the square lattice in two or more nontrivially different ways. A quadrilateral with sides a,b,c,d has perpendicular diagonals iff a^2+c^2 = b^2+d^2. This sequence is the sums of the squares of opposite sides of such quadrilaterals, excluding kites (a=b,c=d), but including right triangles (the degenerate case d=0). %H A118882 Reinhard Zumkeller, <a href="/A118882/b118882.txt">Table of n, a(n) for n = 1..10000</a> %H A118882 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A118882 A000161(a(n)) > 1. [_Reinhard Zumkeller_, Aug 16 2011] %e A118882 50 = 7^2 + 1^2 = 5^2 + 5^2, so 50 is in the sequence. %t A118882 Select[Range[1000], Length[PowersRepresentations[#, 2, 2]] > 1&] (* _Jean-François Alcover_, Mar 02 2019 *) %o A118882 (Haskell) %o A118882 import Data.List (findIndices) %o A118882 a118882 n = a118882_list !! (n-1) %o A118882 a118882_list = findIndices (> 1) a000161_list %o A118882 -- _Reinhard Zumkeller_, Aug 16 2011 %o A118882 (Python) %o A118882 from itertools import count, islice %o A118882 from math import prod %o A118882 from sympy import factorint %o A118882 def A118882_gen(startvalue=1): # generator of terms >= startvalue %o A118882 for n in count(max(startvalue,1)): %o A118882 f = factorint(n) %o A118882 if 1<int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1): %o A118882 yield n %o A118882 A118882_list = list(islice(A118882_gen(),30)) # _Chai Wah Wu_, Sep 09 2022 %Y A118882 Cf. A004431, A009177, A085265. %Y A118882 Cf. A007692, A001481, A022544. %K A118882 nonn %O A118882 1,1 %A A118882 _Franklin T. Adams-Watters_, May 03 2006