cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118889 Ratio of Dimensions of the traditional Cartan exceptional group sequence A1,G2,F4,E6,E7,E8 to the Cartan matrix Dimension: Dimc={1, 2, 4, 6, 7, 8} DimG={3, 14, 52, 78, 133, 248} DimG/DimC={3, 7, 13, 13, 19, 31}.

This page as a plain text file.
%I A118889 #13 Jun 24 2025 10:01:44
%S A118889 3,7,13,13,19,31
%N A118889 Ratio of Dimensions of the traditional Cartan exceptional group sequence A1,G2,F4,E6,E7,E8 to the Cartan matrix Dimension: Dimc={1, 2, 4, 6, 7, 8} DimG={3, 14, 52, 78, 133, 248} DimG/DimC={3, 7, 13, 13, 19, 31}.
%C A118889 The sequence is inherently unordered, because there is no standard ordering of these groups. - _R. J. Mathar_, Dec 04 2011
%F A118889 P[n]=Poincare-Polynomial[n]=Product[1+t^A129766[m],{m,1,n}]
%F A118889 DimG[n]=Length[CoefficientList[P[n],t]]-1
%F A118889 Pc[n]=CharacteristicPolynomial[M[n],x]
%F A118889 DimC[n]=Length[CoefficientList[Pc[n],x]]-1
%F A118889 a[n]=DimG[n]/DimC[n]
%t A118889 (* Cartan Matrices: *)
%t A118889 e[3] = {{2}};
%t A118889 e[4] = {{2, -3}, {-1, 2}};
%t A118889 e[5] = {{2, -1, 0, 0}, {-1, 2, -2, 0}, {0, -1, 2, -1}, {0, 0, -1, 2}};
%t A118889 e[6] = {{2, 0, -1, 0, 0, 0}, {0, 2, 0, -1, 0, 0}, {-1, 0, 2, -1, 0, 0}, { 0, -1, -1, 2, -1, 0}, { 0, 0, 0, -1, 2, -1}, { 0, 0, 0, 0, -1, 2}};
%t A118889 e[7] = {{2, 0, -1, 0, 0, 0, 0}, {0, 2, 0, -1, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0}, {0, 0, 0, -1, 2, -1, 0}, { 0, 0, 0, 0, -1, 2, -1 }, { 0, 0, 0, 0, 0, -1, 2 }};
%t A118889 e[8] = { {2, 0, -1, 0, 0, 0, 0, 0}, { 0, 2, 0, -1, 0, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0, 0}, {0, 0, 0, -1, 2, -1, 0, 0}, { 0, 0, 0, 0, -1, 2, -1, 0}, { 0, 0, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, -1, 2}} ;
%t A118889 a0 = Table[Length[CoefficientList[CharacteristicPolynomial[e[n], x], x]] - 1, {n, 3, 8}]; (* Poincaré Polynomials*)
%t A118889 (*Poincaré polynomial exponents for G2, E6, E7, E8 from A005556, A005763, A005776 and Armand Borel's Essays in History of Lie Groups and Algebraic Groups*) (* b[n] = a[n] + 1 : DimGroup = Apply[Plus, b[n]]*)
%t A118889 a[0] = {1};
%t A118889 a[1] = {1, 5};
%t A118889 a[2] = {1, 5, 7, 11};
%t A118889 a[3] = {1, 4, 5, 7, 8, 11};
%t A118889 a[4] = {1, 5, 7, 9, 11, 13, 17};
%t A118889 a[5] = {1, 7, 11, 13, 17, 19, 23, 29};
%t A118889 b0 = Table[Length[CoefficientList[Expand[Product[(1 + t^(2*a[i][[n]] + 1)), {n, 1, Length[a[i]]}]], t]] - 1, {i, 0, 5}];
%t A118889 Table[b0[[n]]/a0[[n]], {n, 1, Length[a0]}]
%Y A118889 Cf. A117133, A129766, A005556, A005763, A005776.
%K A118889 nonn,fini,full,less,uned
%O A118889 1,1
%A A118889 _Roger L. Bagula_, May 17 2007