cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118914 Table of the prime signatures (sorted lists of exponents of distinct prime factors) of the positive integers.

This page as a plain text file.
%I A118914 #41 Feb 16 2025 08:33:01
%S A118914 1,1,2,1,1,1,1,3,2,1,1,1,1,2,1,1,1,1,1,4,1,1,2,1,1,2,1,1,1,1,1,1,3,2,
%T A118914 1,1,3,1,2,1,1,1,1,1,5,1,1,1,1,1,1,2,2,1,1,1,1,1,1,3,1,1,1,1,1,1,2,1,
%U A118914 2,1,1,1,1,4,2,1,2,1,1,1,2,1,1,3,1,1,1,3,1,1,1,1,1,1,1,2,1,1,1,1,2,6,1,1
%N A118914 Table of the prime signatures (sorted lists of exponents of distinct prime factors) of the positive integers.
%C A118914 Since the prime factorization of 1 is the empty product (i.e., the multiplicative identity, 1), it follows that the prime signature of 1 is the empty multiset { }. (Cf. http://oeis.org/wiki/Prime_signature)
%C A118914 MathWorld wrongly defines the prime signature of 1 as {1}, which is actually the prime signature of primes.
%C A118914 The sequences A025487, A036035, A046523 consider the prime signatures of 1 and 2 to be distinct, implying { } for 1 and {1} for 2.
%C A118914 Since the prime signature of n is a partition of Omega(n), also true for Omega(1) = 0, the order of exponents is only a matter of convention (using reverse sorted lists of exponents would create a different sequence).
%C A118914 Here the multisets of nonzero exponents are sorted in increasing order; it is slightly more common to order them, as the parts of partitions, in decreasing order. This yields A212171. - _M. F. Hasler_, Oct 12 2018
%H A118914 Reinhard Zumkeller, <a href="/A118914/b118914.txt">Rows n = 2..1000 of table, flattened</a>
%H A118914 Nicholas John Bizzell-Browning, <a href="https://bura.brunel.ac.uk/handle/2438/29960">LIE scales: Composing with scales of linear intervallic expansion</a>, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 73.
%H A118914 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSignature.html">Prime Signature</a>
%H A118914 OEIS Wiki, <a href="/wiki/Prime_signatures">Prime signatures</a>
%H A118914 OEIS Wiki, <a href="/wiki/Ordered_prime_signatures">Ordered prime signatures</a>
%e A118914 The table starts:
%e A118914   n : prime signature of n  (factorization of n)
%e A118914   1 : {},                   (empty product)
%e A118914   2 : {1},                  (2^1)
%e A118914   3 : {1},                  (3^1)
%e A118914   4 : {2},                  (2^2)
%e A118914   5 : {1},                  (5^1)
%e A118914   6 : {1, 1},               (2^1 * 3^1)
%e A118914   7 : {1},                  (5^1)
%e A118914   8 : {3},                  (2^3)
%e A118914   9 : {2},                  (3^2)
%e A118914   10 : {1, 1},              (2^1 * 5^1)
%e A118914   11 : {1},                 (11^1)
%e A118914   12 : {1, 2},              (2^2 * 3^1, but exponents are sorted increasingly)
%e A118914   etc.
%t A118914 primeSignature[n_] := Sort[ FactorInteger[n] , #1[[2]] < #2[[2]]&][[All, 2]]; Flatten[ Table[ primeSignature[n], {n, 2, 65}]](* _Jean-François Alcover_, Nov 16 2011 *)
%o A118914 (Haskell)
%o A118914 import Data.List (sort)
%o A118914 a118914 n k = a118914_tabf !! (n-2) !! (k-1)
%o A118914 a118914_row n = a118914_tabf !! (n-2)
%o A118914 a118914_tabf = map sort $ tail a124010_tabf
%o A118914 -- _Reinhard Zumkeller_, Mar 23 2014
%o A118914 (PARI) A118914_row(n)=vecsort(factor(n)[,2]~) \\ _M. F. Hasler_, Oct 12 2018
%Y A118914 Cf. A025487, A036035, A046523, A095904.
%Y A118914 Cf. A124010.
%Y A118914 Cf. A001221 (row lengths), A001222 (row sums).
%K A118914 nonn,tabf
%O A118914 2,3
%A A118914 _Eric W. Weisstein_, May 05 2006
%E A118914 Corrected and edited by _Daniel Forgues_, Dec 22 2010