This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118932 #10 Mar 07 2021 18:43:42 %S A118932 1,1,1,3,9,21,81,351,1233,10249,75841,388411,3733401,33702813, %T A118932 215375889,1984583511,19181083041,141963117201,1797976123393, %U A118932 22534941675379,202605151063081,2992764505338021,43182110678814801,445326641624332623 %N A118932 E.g.f.: A(x) = exp( Sum_{n>=0} x^(3^n)/3^((3^n -1)/2) ). %C A118932 Equals invariant column vector V that satisfies matrix product A118931*V = V, where A118931(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0; thus a(n) = Sum_{k=0..floor(n/3)} A118931(n,k)*a(k), with a(0) = 1. %H A118932 G. C. Greubel, <a href="/A118932/b118932.txt">Table of n, a(n) for n = 0..490</a> %F A118932 a(n) = Sum_{k=0..floor(n/3)} (n!/(k!*(n-3*k)!*3^k)) * a(k), with a(0)=1. %e A118932 E.g.f. A(x) = exp( x + x^3/3 + x^9/3^4 + x^27/3^13 + x^81/3^40 + ...) %e A118932 = 1 + 1*x + 1*x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 81*x^6/6! + ... %t A118932 a[n_]:= a[n]= If[n==0, 1, Sum[n!*a[k]/(3^k*k!*(n-3*k)!), {k, 0, Floor[n/3]}] ]; %t A118932 Table[a[n], {n, 0, 25}] (* _G. C. Greubel_, Mar 07 2021 *) %o A118932 (PARI) {a(n) = if(n==0,1,sum(k=0,n\3,n!/(k!*(n-3*k)!*3^k)*a(k)))} %o A118932 for(n=0,30,print1(a(n),", ")) %o A118932 (PARI) /* Defined by E.G.F.: */ %o A118932 {a(n) = n!*polcoeff( exp(sum(k=0,ceil(log(n+1)/log(3)),x^(3^k)/3^((3^k-1)/2))+x*O(x^n)),n,x)} %o A118932 for(n=0,30,print1(a(n),", ")) %o A118932 (Sage) %o A118932 @CachedFunction %o A118932 def a(n): %o A118932 f=factorial; %o A118932 if n==0: return 1 %o A118932 else: return sum( f(n)*a(k)/(3^k*f(k)*f(n-3*k)) for k in (0..n/3)) %o A118932 [a(n) for n in (0..25)] # _G. C. Greubel_, Mar 07 2021 %o A118932 (Magma) %o A118932 function a(n) %o A118932 F:=Factorial; %o A118932 if n eq 0 then return 1; %o A118932 else return (&+[F(n)*a(j)/(3^j*F(j)*F(n-3*j)): j in [0..Floor(n/3)]]); %o A118932 end if; return a; end function; %o A118932 [a(n): n in [0..25]]; // _G. C. Greubel_, Mar 07 2021 %Y A118932 Cf. A118931. %Y A118932 Variants: A118930, A118935. %K A118932 nonn %O A118932 0,4 %A A118932 _Paul D. Hanna_, May 06 2006