This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118933 #6 Mar 07 2021 20:36:18 %S A118933 1,1,1,1,1,6,1,30,1,90,1,210,1,420,1260,1,756,11340,1,1260,56700,1, %T A118933 1980,207900,1,2970,623700,1247400,1,4290,1621620,16216200,1,6006, %U A118933 3783780,113513400,1,8190,8108100,567567000,1,10920,16216200,2270268000,3405402000 %N A118933 Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0. %C A118933 Row n contains 1+floor(n/4) terms. Row sums yield A118934. Given column vector V = A118935, then V is invariant under matrix product T*V = V, or, A118935(n) = Sum_{k=0..n} T(n,k)*A118935(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(4n,n) = (4*n)!/(n!*4^n), 0 otherwise (cf. A100861 formula due to Paul Barry). %H A118933 G. C. Greubel, <a href="/A118933/b118933.txt">Rows n = 0..150 of the triangle, flattened</a> %F A118933 E.g.f.: A(x,y) = exp(x + y*x^4/4). %e A118933 Triangle begins: %e A118933 1; %e A118933 1; %e A118933 1; %e A118933 1; %e A118933 1, 6; %e A118933 1, 30; %e A118933 1, 90; %e A118933 1, 210; %e A118933 1, 420, 1260; %e A118933 1, 756, 11340; %e A118933 1, 1260, 56700; %e A118933 1, 1980, 207900; %e A118933 1, 2970, 623700, 1247400; ... %t A118933 T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)]; %t A118933 Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* _G. C. Greubel_, Mar 07 2021 *) %o A118933 (PARI) T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k)) %o A118933 (Sage) %o A118933 f=factorial; %o A118933 flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # _G. C. Greubel_, Mar 07 2021 %o A118933 (Magma) %o A118933 F:= Factorial; %o A118933 [n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // _G. C. Greubel_, Mar 07 2021 %Y A118933 Cf. A118934 (row sums), A118935 (invariant vector). %Y A118933 Variants: A100861, A118931. %K A118933 nonn,tabl %O A118933 0,6 %A A118933 _Paul D. Hanna_, May 06 2006