This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118976 #23 Feb 08 2022 02:15:22 %S A118976 1,2,1,4,4,1,7,12,7,1,11,30,30,11,1,16,65,100,65,16,1,22,126,280,280, %T A118976 126,22,1,29,224,686,980,686,224,29,1,37,372,1512,2940,2940,1512,372, %U A118976 37,1,46,585,3060,7812,10584,7812,3060,585,46,1,56,880,5775,18810,33264,33264,18810,5775,880,56,1 %N A118976 Triangle read by rows: T(n,k) = binomial(n-1,k-1)*binomial(n,k-1)/k + binomial(n-1,k)*binomial(n,k)/(k+1) (1 <= k <= n). In other words, to each entry of the Narayana triangle (A001263) add the entry on its right. %C A118976 Sum of entries in row n = 2*Cat(n)-1, where Cat(n) are the Catalan numbers (A000108). %C A118976 Row sums = A131428 starting (1, 3, 9, 27, 83, ...). - _Gary W. Adamson_, Aug 31 2007 %H A118976 G. C. Greubel, <a href="/A118976/b118976.txt">Rows n = 1..100 of triangle, flattened</a> %F A118976 G.f.: A001263(x, y)*(x + x*y) + x*y. - _Vladimir Kruchinin_, Oct 21 2020 %e A118976 First few rows of the triangle: %e A118976 1; %e A118976 2, 1; %e A118976 4, 4, 1; %e A118976 7, 12, 7, 1; %e A118976 11, 30, 30, 11, 1; %e A118976 16, 65, 100, 65, 16, 1; %e A118976 ... %e A118976 Row 4 of the triangle = (7, 12, 7, 1), derived from row 4 of the Narayana triangle, (1, 6, 6, 1): = ((1+6), (6+6), (6+1), (1)). %p A118976 T:=(n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k+binomial(n-1,k) *binomial(n,k)/ (k+1): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form %p A118976 # Alternatively: %p A118976 gf := 1 - ((1/2)*(x + 1)*(sqrt((x*y + y - 1)^2 - 4*y^2*x) + x*y + y - 1))/(y*x): %p A118976 sery := series(gf, y, 10): coeffy := n -> expand(coeff(sery, y, n)): %p A118976 seq(print(seq(coeff(coeffy(n), x, k), k=1..n)), n=1..8); # _Peter Luschny_, Oct 21 2020 %t A118976 With[{B=Binomial}, Table[B[n-1,k-1]*B[n,k-1]/k + B[n-1,k]*B[n,k]/(k+1), {n,12}, {k,n}]//Flatten] (* _G. C. Greubel_, Aug 12 2019 *) %o A118976 (PARI) T(n,k) = b=binomial; b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1); %o A118976 for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Aug 12 2019 %o A118976 (Magma) B:=Binomial; [B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Aug 12 2019 %o A118976 (Sage) %o A118976 def T(n, k): %o A118976 b=binomial %o A118976 return b(n-1,k-1)*b(n,k-1)/k + b(n-1,k)*b(n,k)/(k+1) %o A118976 [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Aug 12 2019 %o A118976 (GAP) B:=Binomial; Flat(List([1..12], n-> List([1..n], k-> B(n-1,k-1)*B(n,k-1)/k + B(n-1,k)*B(n,k)/(k+1) ))); # _G. C. Greubel_, Aug 12 2019 %Y A118976 Cf. A001263, A034856, A000108, A131428. %K A118976 nonn,tabl %O A118976 1,2 %A A118976 _Gary W. Adamson_, May 07 2006 %E A118976 Edited by _N. J. A. Sloane_, Nov 29 2006