This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118980 #31 Jul 21 2022 03:06:46 %S A118980 1,2,1,6,5,2,14,22,18,6,34,85,118,84,24,82,311,660,780,480,120,198, %T A118980 1100,3380,5964,6024,3240,720,478,3809,16380,40740,60480,52920,25200, %U A118980 5040,1154,13005,76518,258804,531864,676080,519840,221760,40320,2786,43978,348462,1564314,4286880,7444800,8240400 %N A118980 Triangle read by rows: rows = inverse binomial transforms of columns of A309220. %C A118980 First few columns of A309220: %C A118980 1, 2, 6, 14, 34, ... %C A118980 1, 3, 11, 36, 119, ... %C A118980 1, 4, 18, 76, 322, ... %C A118980 1, 5, 27, 140, 727, ... %C A118980 1, 6, 38, 234, 1442, ... %C A118980 1, 7, 51, 364, 2599, ... %C A118980 1, 8, 66, 536, 4354, ... %C A118980 ... %e A118980 First few rows of the triangle: %e A118980 1; %e A118980 2, 1; %e A118980 6, 5, 2; %e A118980 14, 22, 18, 6; %e A118980 34, 85, 118, 84, 24; %e A118980 82, 311, 660, 780, 480, 120; %e A118980 ... %e A118980 Column 3 of A309220 = (6, 11, 18, 27, 38, 51, ...), whose inverse binomial transform is (6, 5, 2). %p A118980 with(transforms); %p A118980 M := 12; %p A118980 T := [1]; %p A118980 S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120): %p A118980 for n from 1 to M do %p A118980 R2 := expand(coeff(S, x, n)); %p A118980 R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)]; %p A118980 f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ): %p A118980 s1 := [seq(f(i),i=1..3*n)]; %p A118980 s2 := BINOMIALi(s1); %p A118980 s3 := [seq(s2[i],i=1..n+1)]; %p A118980 T := [op(T), op(s3)]; %p A118980 od: %p A118980 T; # _N. J. A. Sloane_, Aug 12 2019 %Y A118980 The leading column is A099425, and the rightmost two diagonals are A038720 and A000142. %Y A118980 Cf. A104509, A117938, A118981, A309220. %K A118980 nonn,tabl %O A118980 1,2 %A A118980 _Gary W. Adamson_, May 07 2006 %E A118980 Edited and extended by _N. J. A. Sloane_, Aug 12 2019, guided by the comments of _R. J. Mathar_ from Oct 30 2011