This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118983 #14 Jan 25 2021 20:36:51 %S A118983 24,12,0,15,30,18,-4,-4,34,-4,-4,22,8,8,0,-8,-8,38,4,4,26,4,4,42,-4, %T A118983 -4,58,-4,-4,50,4,7,-7,-4,52,8,8,0,-8,-8,68,4,4,56,4,4,80,-8,-8,80,4, %U A118983 4,-4,0,4,-4,-4,86,4,7 %N A118983 Determinant of 3 X 3 matrices of n-th continuous block of 9 consecutive composites. %C A118983 Analog of A117330 with composites instead of primes. %F A118983 a(n) = c(n)*c(n+4)*c(n+8) - c(n)*c(n+5)*c(n+7) - c(n+1)*c(n+3)*c(n+8) + c(n+1)*c(n+5)*c(n+6) + c(n+2)*c(n+3)*c(n+7) - c(n+2)*c(n+4)*c(n+6) where c(n) = A002808(n) is the n-th composite. %e A118983 a(1) = 24 = %e A118983 | 4 6 8| %e A118983 | 9 10 12| %e A118983 |14 15 16|. %e A118983 a(3) = 0 because of the first of an infinite number of singular matrices: %e A118983 | 8 9 10| %e A118983 |12 14 15| %e A118983 |16 18 20|. %e A118983 a(15) = 0 because of the singular matrix: %e A118983 |25 26 27| %e A118983 |28 30 32| %e A118983 |33 34 35|. %e A118983 a(38) = 0 because of the singular matrix: %e A118983 |55 56 57| %e A118983 |58 60 62| %e A118983 |63 64 65|. %e A118983 a(54) = 0 because of the singular matrix: %e A118983 |76 77 78| %e A118983 |80 81 82| %e A118983 |84 85 86|. %p A118983 A118983 := proc(n) A002808(n)*A002808(n+4)*A002808(n+8) -A002808(n)*A002808(n+5) *A002808(n+7) -A002808(n+1)*A002808(n+3) *A002808(n+8) +A002808(n+1)*A002808(n+5) *A002808(n+6) +A002808(n+2)*A002808(n+3) *A002808(n+7) -A002808(n+2)*A002808(n+4) *A002808(n+6) ; end proc: %p A118983 seq(A118983(n),n=1..60) ; # _R. J. Mathar_, Dec 22 2010 %t A118983 Det[#]&/@(Partition[#,3]&/@Partition[Select[Range[100],CompositeQ],9,1]) (* _Harvey P. Dale_, May 16 2019 *) %o A118983 (PARI) c(n) = for(k=0, primepi(n), isprime(n++)&&k--); n; \\ A002808 %o A118983 a(n) = matdet(matrix(3,3,i,j,c((n+j-1)+3*(i-1)))); \\ _Michel Marcus_, Jan 25 2021 %Y A118983 Cf. A002808, A117301, A117330, A118780, A118781. %K A118983 easy,sign,less %O A118983 1,1 %A A118983 _Jonathan Vos Post_, May 25 2006