cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118984 Triangular T(n,k) which contains in column k >= 0 the elements of the Stirling transform of the unsigned sequence Stirling1(j+k,j), j >= 0.

This page as a plain text file.
%I A118984 #42 Mar 22 2022 02:54:06
%S A118984 1,2,1,5,6,2,15,31,23,6,52,160,195,110,24,203,856,1505,1365,634,120,
%T A118984 877,4802,11312,14560,10738,4284,720,4140,28337,85225,145096,150325,
%U A118984 94444,33228,5040,21147,175896,652703,1404186,1908249,1672524,921212,291024
%N A118984 Triangular T(n,k) which contains in column k >= 0 the elements of the Stirling transform of the unsigned sequence Stirling1(j+k,j), j >= 0.
%C A118984 The initial array of unsigned Stirling numbers of the first kind (filled with an appropriate number of zeros) starts (see A094638)
%C A118984      1,     0,     0,     0,     0,     0,     0,     0,  ...
%C A118984      1,     1,     0,     0,     0,     0,     0,     0,  ...
%C A118984      1,     3,     2,     0,     0,     0,     0,     0,  ...
%C A118984      1,     6,    11,     6,     0,     0,     0,     0,  ...
%C A118984      1,    10,    35,    50,    24,     0,     0,     0,  ...
%C A118984      1,    15,    85,   225,   274,   120,     0,     0,  ...
%C A118984      1,    21,   175,   735,  1624,  1764,   720,     0,  ...
%C A118984      1,    28,   322,  1960,  6769, 13132, 13068,  5040,  ...
%C A118984 The Stirling transform is then applied on each individual column. - _R. J. Mathar_, May 19 2016.
%H A118984 Sela Fried, <a href="https://arxiv.org/abs/2202.13061">The expected degree of noninvertibility of compositions of functions and a related combinatorial identity</a>, arXiv:2202.13061 [math.CO], 2022. See Corollary 2.6 for a combinatorial identity of a signed version of this sequence.
%e A118984 The array begins
%e A118984      1;
%e A118984      2,     1;
%e A118984      5,     6,     2;
%e A118984     15,    31,    23,      6;
%e A118984     52,   160,   195,    110,     24;
%e A118984    203,   856,  1505,   1365,    634,   120;
%e A118984    877,  4802, 11312,  14560,  10738,  4284,   720;
%e A118984   4140, 28337, 85225, 145096, 150325, 94444, 33228, 5040;
%p A118984 read("transforms"):
%p A118984 A118984 := proc(n,k)
%p A118984     [seq(0,j=0..k-2), seq( (-1)^k*combinat[stirling1](j+k,j),j=0..n)] ;
%p A118984     STIRLING(%) ;
%p A118984     op(n,%) ;
%p A118984 end proc: # _R. J. Mathar_, May 19 2016
%Y A118984 Cf. A000110 (first column), A000142 (diagonal), A000670 (row sums), A003128 (2nd column), A008275, A008277.
%K A118984 nonn,tabl
%O A118984 1,2
%A A118984 _Alford Arnold_, May 07 2006
%E A118984 Edited by _R. J. Mathar_, May 19 2016