This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119003 #18 Jun 18 2025 00:54:59 %S A119003 1,0,4,16,48,160,576,4096,14336,65536 %N A119003 Maximal determinant of real n X n symmetric (+1,-1) matrices. %C A119003 Computation of the determinant of these two matrices: %C A119003 {-1, -1, -1, -1, 1, 1, 1, -1}, %C A119003 {-1, 1, -1, 1, 1, 1, -1, 1}, %C A119003 {-1, -1, 1, 1, 1, -1, -1, -1}, %C A119003 {-1, 1, 1, 1, -1, 1, 1, -1}, %C A119003 { 1, 1, 1, -1, 1, 1, -1, -1}, %C A119003 { 1, 1, -1, 1, 1, -1, 1, -1}, %C A119003 { 1, -1, -1, 1, -1, 1, -1, -1}, %C A119003 {-1, 1, -1, -1, -1, -1, -1, -1} %C A119003 and %C A119003 {-1, 1, 1, -1, 1, -1, 1, 1, 1}, %C A119003 { 1, -1, 1, -1, 1, 1, 1, 1, -1}, %C A119003 { 1, 1, 1, 1, 1, -1, -1, 1, -1}, %C A119003 {-1, -1, 1, 1, -1, 1, 1, -1, 1}, %C A119003 { 1, 1, 1, -1, -1, -1, 1, -1, -1}, %C A119003 {-1, 1, -1, 1, -1, 1, 1, 1, -1}, %C A119003 { 1, 1, -1, 1, 1, 1, 1, -1, 1}, %C A119003 { 1, 1, 1, -1, -1, 1, -1, 1, 1}, %C A119003 { 1, -1, -1, 1, -1, -1, 1, 1, 1} %C A119003 shows that a(8) = A003433(8) = 4096 and a(9) = A003433(9) = 14336. - _Jean-François Alcover_, Nov 19 2017 %C A119003 a(n) = n^(n/2) once there exists a symmetric Hadamard matrix of order n. In particular, a(12) = 12^6, a(16) = 16^8, etc. - _Max Alekseyev_, Jun 17 2025 %H A119003 <a href="/index/De#determinants">Index entries for sequences related to maximal determinants</a> %H A119003 N. A. Balonin, Y. N. Balonin, D. Z. Djokovic, D. A. Karbovskiy, M. B. Sergeev. <a href="https://arxiv.org/abs/1708.05098">Construction of symmetric Hadamard matrices</a>, arXiv:1708.05098 [math.CO], 2017. %H A119003 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hadamard%27s_maximal_determinant_problem">Hadamard's maximal determinant problem</a>. %Y A119003 Cf. A003433, A119002, A119001, A119005. %K A119003 nonn,more %O A119003 1,3 %A A119003 _Giovanni Resta_, May 08 2006 %E A119003 a(8) and a(9) from _Jean-François Alcover_, Nov 19 2017 %E A119003 a(10) from _Max Alekseyev_, Jun 17 2025