A119028 Numbers having at least 3 unique partitions into exactly 3 parts with the same product.
39, 45, 49, 53, 62, 64, 65, 70, 71, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 1
Keywords
Examples
49 = 7 + 18 + 24 7*18*24 = 3024 49 = 8 + 14 + 27 8*14*27 = 3024 49 = 9 + 12 + 28 9*12*28 = 3024 or 49 = 9 + 20 + 20 9*20*20 = 3600 49 = 10 + 15 + 24 10*15*24 = 3600 49 = 12 + 12 + 25 12*12*25 = 3600
Programs
-
Mathematica
pdt[lst_] := lst[[1]]*lst[[2]]*lst[[3]]; tanya[n_] := Max[Length /@ Split[Sort[pdt /@ Union[ Partition[Last /@ Flatten[ FindInstance[a + b + c == n && a >= b >= c > 0, {a, b, c}, Integers,(* failsafe *) PartitionsP@n]], 3]] ]]]; Select[ Range[4, 121], tanya@# >= 3 (*or strictly = ?*) &] Select[Range[3, 121], Max[Length /@ Split[Sort[Times @@@ Partition[Last /@ Flatten[FindInstance[a + b + c == # && a >= b >= c > 0, {a, b, c}, Integers,(* cf A069905 *) Round[ #^2/12]]], 3]]]] >= 3 &]
Extensions
More terms from Robert G. Wilson v, Jul 27 2006
Comments