cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119030 Difference between numerator and denominator of the sum of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n), A117731[n] - A117664[n].

This page as a plain text file.
%I A119030 #2 Mar 31 2012 13:20:26
%S A119030 0,4,27,428,1375,15797,211631,86540,1496205,144045379,145607407,
%T A119030 3378951221,17021747431,51392118293,214084856611,13337033800292,
%U A119030 13393340889767,94103945740529,3493457389196573,3503912518228613
%N A119030 Difference between numerator and denominator of the sum of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n), A117731[n] - A117664[n].
%C A119030 p^3 divides a(p^k) for prime p>2 and integer k>0.
%F A119030 a(n) = Numerator[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}]] - Denominator[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}]]. a(n) = A117731[n] - A117664[n].
%t A119030 Numerator[Table[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,25}]] - Denominator[Table[Sum[Sum[1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,25}]]
%Y A119030 Cf. A117731, A117664.
%K A119030 nonn
%O A119030 1,2
%A A119030 _Alexander Adamchuk_, Jul 22 2006