cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119033 Triangular numbers composed of digits {0,1,2}.

This page as a plain text file.
%I A119033 #35 May 03 2023 23:30:18
%S A119033 1,10,21,120,210,2211,10011,20100,112101,222111,2001000,22221111,
%T A119033 110120220,122000010,200010000,1210000221,2222211111,12001110201,
%U A119033 20000100000,122021211021,222222111111,2000001000000,12201101000011,22222221111111,200000010000000
%N A119033 Triangular numbers composed of digits {0,1,2}.
%C A119033 Cross-references to similar sequences:
%C A119033   012 A119033   013 A119035   014 A119037   015 A119039   016 A119041
%C A119033   017 A119043   018 A119045   019 A119047   023 A119049   024 A218390
%C A119033   025 A119051   026 A119053   027 A218397   028 A119055   029 A119057
%C A119033   034 A119059   035 A119061   036 A119063   037 A119065   038 A119067
%C A119033   039 A119069   045 A119071   046 A119073   047 A218399   048 A119075
%C A119033   049 A119077   056 A119079   057 A119081   058 A119083   059 A119085
%C A119033   067 A119087   068 A119089   069 A119091   078 A119093   079 A218401
%C A119033   089 A119095   123 A119097   124 A119099   125 A119101   126 A119103
%C A119033   127 A119105   128 A119107   129 A119109   134 A119111   135 A119113
%C A119033   136 A119115   137 A119117   138 A119119   139 A119121   145 A119123
%C A119033   146 A119125   147 A079654   148 A119128   149 A119130   156 A119132
%C A119033   157 A119134   158 A119136   159 A119138   167 A119140   168 A119142
%C A119033   169 A119144   178 A119146   179 A119148   189 A119150   234   {3}
%C A119033   235 A119152   236 A119154   237   {3}     238 A119156   239   {3}
%C A119033   245 A119158   246 A119160   247   { }     248 A119162   249   { }
%C A119033   256 A119164   257 A119166   258 A119168   259 A119170   267 A119172
%C A119033   268 A119174   269 A119176   278 A119178   279   { }     289 A119180
%C A119033   345 A119182   346 A119184   347   {3}     348   {3}     349   {3}
%C A119033   356 A119186   357 A119188   358 A119190   359 A119192   367 A119194
%C A119033   368 A119196   369 A119198   378 A119200   379   {3}     389   {3}
%C A119033   456 A119202   457 A119204   458 A119206   459 A119208   467 A119210
%C A119033   468 A119212   469 A119214   478 A119216   479   { }     489   { }
%C A119033   567 A119218   568 A119220   569 A119222   578 A119224   579 A119226
%C A119033   589 A119228   678 A119230   679 A119232   689 A119234   789 A119236
%C A119033 Entries marked "{ }" correspond to empty sequences: for every triangular number t, the residue t mod 100 contains at least one digit other than the three specified digits.
%C A119033 Entries marked "{3}" correspond to sequences containing only the single term 3: for every triangular number t != 3, the residue t mod 100 contains at least one digit other than the three specified digits.
%C A119033 (Proof: No triangular number ends in 2, 4, 7, or 9; every triangular number ending in 8 ends in 28 or 78; every triangular number ending in 3, other than the single-digit triangular number 3, ends in 03 or 53.) [Edited by _Jon E. Schoenfield_, May 02 2023]
%C A119033 Note that the first 36 sequences that are listed above do not contain "0" as the first term although 0 is a triangular number. In other words, sequences focus on the positive triangular numbers. - _Altug Alkan_, May 02 2016
%C A119033 a(n) == 1 or a(n) == 0 (mod 10). - _Chai Wah Wu_, Nov 30 2018
%H A119033 Giovanni Resta, <a href="http://www.numbersaplenty.com/tr/tr012.html">Tridigital Triangular Numbers</a>.
%F A119033 a(n) = A000217(A119034(n)). - _Tyler Busby_, Mar 31 2023
%t A119033 Rest[Select[FromDigits/@Tuples[{0, 1, 2}, 10], IntegerQ[(Sqrt[8 # + 1] - 1)/2] &]] (* _Vincenzo Librandi_, Dec 18 2015 *)
%o A119033 (Magma) [t: n in [1..2*10^7] | Set(Intseq(t)) subset {0,1,2} where t is n*(n+1) div 2]; // _Vincenzo Librandi_, Dec 18 2015
%o A119033 (PARI) isok(n) = ispolygonal(n, 3) && (vecmax(digits(n)) <= 2); \\ _Michel Marcus_, Dec 18 2015
%Y A119033 Cf. A000217, A058412, A119034.
%Y A119033 Cf. A213516 (triangular numbers having only two different digits).
%K A119033 nonn,base
%O A119033 1,2
%A A119033 _Giovanni Resta_, May 10 2006
%E A119033 a(24)-a(25) from _Vincenzo Librandi_, Dec 18 2015