cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119245 Triangle, read by rows, defined by: T(n,k) = (4*k+1)*binomial(2*n+1, n-2*k)/(2*n+1) for n >= 2*k >= 0.

This page as a plain text file.
%I A119245 #43 Jun 23 2018 04:56:41
%S A119245 1,1,2,1,5,5,14,20,1,42,75,9,132,275,54,1,429,1001,273,13,1430,3640,
%T A119245 1260,104,1,4862,13260,5508,663,17,16796,48450,23256,3705,170,1,58786,
%U A119245 177650,95931,19019,1309,21,208012,653752,389367,92092,8602,252,1
%N A119245 Triangle, read by rows, defined by: T(n,k) = (4*k+1)*binomial(2*n+1, n-2*k)/(2*n+1) for n >= 2*k >= 0.
%C A119245 Closely related to triangle A118919.
%C A119245 Row n contains 1+floor(n/2) terms.
%C A119245 From _Peter Bala_, Mar 20 2009: (Start)
%C A119245 Combinatorial interpretations of T(n,k):
%C A119245 1) The number of standard tableaux of shape (n-2*k,n+2*k).
%C A119245 2) The entries in column k are (with an offset of 2*k) the number of n-th generation vertices in the tree of sequences with unit increase labeled by 4*k. See [Sunik, Theorem 4]. (End)
%H A119245 Zoran Sunic, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v10i1n5">Self describing sequences and the Catalan family tree</a>, Elect. J. Combin., 10 (No. 1, 2003). - _Peter Bala_, Mar 20 2009
%F A119245 G.f.: A(x,y) = f/(1-x^2*y*f^4), where f=(1-sqrt(1-4*x))/(2*x) is the Catalan g.f. (A000108).
%F A119245 Row sums equal A088218(n) = C(2*n-1,n).
%F A119245 T(n,0) = A000108(n) (the Catalan numbers).
%F A119245 T(n,1) = A000344(n).
%F A119245 T(n,2) = A001392(n).
%F A119245 Sum_{k=0..floor(n/2)} k*T(n,k) = A000346(n-2).
%F A119245 Eigenvector is defined by: A119244(n) = Sum_{k=0..[n\2]} T(n,k)*A119244(k).
%F A119245 ...
%F A119245 T(n,k) = (4*k+1)/(n+2*k+1)*binomial(2*n,n+2*k). Compare with A158483. - _Peter Bala_, Mar 20 2009
%F A119245 T(n,k) = A039599(n, 2*k). - _Johannes W. Meijer_, Sep 04 2013
%F A119245 A002894(n) = Sum_{k=0..floor(n/2)} (binomial(2k,k)^2)*(4^(n-2*k))*T(n,k). - _Bradley Klee_, Feb 26 2018
%e A119245 Triangle begins:
%e A119245      1;
%e A119245      1;
%e A119245      2,     1;
%e A119245      5,     5;
%e A119245     14,    20,    1;
%e A119245     42,    75,    9;
%e A119245    132,   275,   54,   1;
%e A119245    429,  1001,  273,  13;
%e A119245   1430,  3640, 1260, 104,  1;
%e A119245   4862, 13260, 5508, 663, 17; ...
%t A119245 f1 = (1-Sqrt[1-4*x])/(2*x);
%t A119245 DeleteCases[CoefficientList[Normal@Series[f1/(1 - x^2*y*f1^4),{x,0,10},{y,0,5}],{x,y}],0,Infinity]//TableForm  (* _Bradley Klee_, Feb 26 2018 *)
%t A119245 Table[(1+4*k)/(n+1+2*k)*Binomial[2*n,n+2*k],{n,0,10},{k,0,Floor[n/2]}]//TableForm (* _Bradley Klee_, Feb 26 2018 *)
%o A119245 (PARI) T(n,k)=(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1)
%Y A119245 Cf. A119244 (eigenvector), A088218, A000108, A000344, A001392; A118919 (variant), A158483; A002057, A002894.
%K A119245 nonn,tabf
%O A119245 0,3
%A A119245 _Paul D. Hanna_, May 10 2006