cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119274 Triangle of coefficients of numerators in Padé approximation to exp(x).

This page as a plain text file.
%I A119274 #25 Mar 28 2020 14:02:03
%S A119274 1,2,1,12,6,1,120,60,12,1,1680,840,180,20,1,30240,15120,3360,420,30,1,
%T A119274 665280,332640,75600,10080,840,42,1,17297280,8648640,1995840,277200,
%U A119274 25200,1512,56,1,518918400,259459200,60540480,8648640,831600,55440,2520
%N A119274 Triangle of coefficients of numerators in Padé approximation to exp(x).
%C A119274 n-th numerator of Padé approximation is (1/n!)*sum{j=0..n, C(n,j)(2n-j)!x^j}. Reversal of A113025. Row sums are A001517. First column is A001813. Inverse is A119275.
%C A119274 Also the Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+2) (A001813) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265606. - _Peter Luschny_, Dec 31 2015
%C A119274 Dividing each diagonal by its initial element generates A054142. - _Tom Copeland_, Oct 10 2016
%F A119274 Number triangle T(n,k) = C(n,k)(2n-k)!/n!.
%F A119274 After adding a leading column (1,0,0,0,...), the triangle gives the coefficients of the Sheffer associated sequence (binomial-type polynomials) for the delta (lowering) operator D(1-D) with e.g.f. exp[ x * (1 - sqrt(1-4t)) / 2 ] . See Mathworld on Sheffer sequences. See A134685 for relation to Catalan numbers. - _Tom Copeland_, Feb 09 2008
%e A119274 Triangle begins
%e A119274 1,
%e A119274 2, 1,
%e A119274 12, 6, 1,
%e A119274 120, 60, 12, 1,
%e A119274 1680, 840, 180, 20, 1,
%e A119274 30240, 15120, 3360, 420, 30, 1
%p A119274 # The function BellMatrix is defined in A264428.
%p A119274 # Adds (1,0,0,0, ..) as column 0.
%p A119274 BellMatrix(n -> (2*n)!/n!, 9); # _Peter Luschny_, Jan 27 2016
%t A119274 BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t A119274 rows = 12;
%t A119274 M = BellMatrix[(2#)!/#!&, rows];
%t A119274 Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 24 2018, after _Peter Luschny_ *)
%o A119274 (Sage) # uses[bell_transform from A264428]
%o A119274 # Adds a column 1,0,0,0,... at the left side of the triangle.
%o A119274 def A119274_row(n):
%o A119274     multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
%o A119274     mfact = [multifact_4_2(k) for k in (0..n)]
%o A119274     return bell_transform(n, mfact)
%o A119274 [A119274_row(n) for n in (0..9)] # _Peter Luschny_, Dec 31 2015
%Y A119274 Cf. A001497, A054142.
%K A119274 easy,nonn,tabl
%O A119274 0,2
%A A119274 _Paul Barry_, May 12 2006