cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119307 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, k)*C(j, n - k).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 46, 19, 1, 1, 29, 127, 127, 29, 1, 1, 41, 281, 517, 281, 41, 1, 1, 55, 541, 1579, 1579, 541, 55, 1, 1, 71, 946, 4001, 6376, 4001, 946, 71, 1, 1, 89, 1541, 8889, 20626, 20626, 8889, 1541, 89, 1, 1, 109, 2377, 17907, 56904, 82994
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Examples

			Triangle begins
  1,
  1, 1,
  1, 5, 1,
  1, 11, 11, 1,
  1, 19, 46, 19, 1,
  1, 29, 127, 127, 29, 1,
  1, 41, 281, 517, 281, 41, 1
  ...
		

Crossrefs

Second column is A028387.
Row sums are A014300.
Central coefficients T(2*n, n) are A112029.

Programs

  • Maple
    T := (n, k) -> if n = k then 1 else binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) fi: for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
    # Peter Luschny, May 13 2024
  • Mathematica
    Flatten[Table[Sum[Binomial[j,k] Binomial[j,n-k],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    tabl(nn)={for (n=0, nn, for(k=0, n, print1(sum(j=0, n, binomial(j,k)*binomial(j,n-k)),", ");); print(););};
    tabl(10); \\ Indranil Ghosh, Mar 03 2017

Formula

T(n, k) = T(n, n - k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) for k=0..n-1. - Peter Luschny, May 13 2024