A119307 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, k)*C(j, n - k).
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 46, 19, 1, 1, 29, 127, 127, 29, 1, 1, 41, 281, 517, 281, 41, 1, 1, 55, 541, 1579, 1579, 541, 55, 1, 1, 71, 946, 4001, 6376, 4001, 946, 71, 1, 1, 89, 1541, 8889, 20626, 20626, 8889, 1541, 89, 1, 1, 109, 2377, 17907, 56904, 82994
Offset: 0
Examples
Triangle begins 1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 46, 19, 1, 1, 29, 127, 127, 29, 1, 1, 41, 281, 517, 281, 41, 1 ...
Links
- Indranil Ghosh, Rows 0..100, flattened
Crossrefs
Programs
-
Maple
T := (n, k) -> if n = k then 1 else binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) fi: for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, May 13 2024
-
Mathematica
Flatten[Table[Sum[Binomial[j,k] Binomial[j,n-k],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
-
PARI
tabl(nn)={for (n=0, nn, for(k=0, n, print1(sum(j=0, n, binomial(j,k)*binomial(j,n-k)),", ");); print(););}; tabl(10); \\ Indranil Ghosh, Mar 03 2017
Formula
T(n, k) = T(n, n - k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) for k=0..n-1. - Peter Luschny, May 13 2024