cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A188460 Diagonal sums of number triangle A119308.

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 103, 238, 555, 1305, 3090, 7362, 17637, 42460, 102670, 249246, 607256, 1484343, 3639094, 8946260, 22048771, 54467577, 134842844, 334493154, 831296965, 2069573632, 5160747114, 12888640503, 32234749938, 80728619175, 202433907465
Offset: 0

Views

Author

Paul Barry, Apr 01 2011

Keywords

Comments

Hankel transform is period 12, repeat (1, 0, -1, -2, -1, 0, 1, 1, 0, 0, 0, 1).

Programs

  • PARI
    x='x+O('x^66); Vec((1-2*x-x^3-(1-x)*sqrt((x^2-3*x+1)*(x^2+x+1)))/(2*x^5)) \\ Joerg Arndt, May 11 2013

Formula

a(n)=sum{k=0..floor(n/2), sum{j=0..n-k, C(n-k,j)*if(k<=j, C(j+1,2*(j-k))*A000108(j-k),0)}}.
G.f.: (1-2*x-x^3-(1-x)*sqrt((x^2-3*x+1)*(x^2+x+1)))/(2*x^5). - Mark van Hoeij, May 10 2013
Conjecture: (n+5)*(n+1)*a(n) -(2*n+5)*(n+2)*a(n-1) -(n+2)*(n+1)*a(n-2) -(n+1)*(2*n+1)*a(n-3) +(n-2)*(n+2)*a(n-4)=0. - R. J. Mathar, Feb 13 2015

A356261 Partition triangle read by rows, counting irreducible permutations with weakly decreasing Lehmer code, refining triangle A119308.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 1, 0, 2, 1, 5, 1, 0, 2, 2, 7, 7, 9, 1, 0, 2, 2, 1, 9, 18, 3, 16, 24, 14, 1, 0, 2, 2, 2, 11, 22, 11, 11, 25, 75, 25, 30, 60, 20, 1, 0, 2, 2, 2, 1, 13, 26, 26, 13, 13, 36, 108, 54, 108, 9, 55, 220, 110, 50, 125, 27, 1
Offset: 0

Views

Author

Peter Luschny, Aug 16 2022

Keywords

Examples

			Partition table T(n, k) begins:
[0] 1;
[1] 1;
[2] 0, 1;
[3] 0, 2, 1;
[4] 0, [2, 1],  5,  1;
[5] 0, [2, 2], [7,  7],   9,  1;
[6] 0, [2, 2,  1], [9,   18, 3], [16, 24], 14,    1;
[7] 0, [2, 2,  2], [11,  22, 11, 11], [25, 75,  25], [30, 60],  20, 1;
[8] 0, [2, 2, 2, 1],[13, 26, 26, 13, 13],[36, 108, 54, 108,9],[55, 220, 110],[50, 125], 27, 1;
Summing the bracketed terms reduces the triangle to A119308.
		

Crossrefs

Cf. A356264, A119308 (reduced), A071724 (row sums).

Programs

  • SageMath
    # using function perm_red_stats and reducible from A356264
    def weakly_decreasing(L: list[int]) -> bool:
        return all(x >= y for x, y in zip(L, L[1:]))
    @cache
    def A356261_row(n: int) -> list[int]:
        if n < 2: return [1]
        return [0] + [v[1] for v in perm_red_stats(n, irreducible, weakly_decreasing)]
    def A356261(n: int, k: int) -> int:
        return A356261_row(n)[k]
    for n in range(8):
        print([n], A356261_row(n))

A188463 Coefficient array of the second column of the inverse of the Riordan array ((1+(r+1)x)/(1+(r+2)x+rx^2), x/(1+(r+2)x+rx^2)).

Original entry on oeis.org

1, 3, 1, 7, 7, 1, 15, 30, 12, 1, 31, 103, 79, 18, 1, 63, 312, 387, 166, 25, 1, 127, 873, 1586, 1085, 305, 33, 1, 255, 2314, 5768, 5719, 2545, 512, 42, 1, 511, 5899, 19261, 25994, 16661, 5285, 805, 52, 1, 1023, 14604, 60337, 106009, 92008, 41881, 10038, 1204, 63, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2011

Keywords

Comments

First column is A000225. Row sums are A128714(n+2). Diagonal sums are A188464.

Examples

			Triangle begins
1,
3, 1,
7, 7, 1,
15, 30, 12, 1,
31, 103, 79, 18, 1,
63, 312, 387, 166, 25, 1,
127, 873, 1586, 1085, 305, 33, 1,
255, 2314, 5768, 5719, 2545, 512, 42, 1,
511, 5899, 19261, 25994, 16661, 5285, 805, 52, 1
		

Crossrefs

Cf. A119308.

Formula

G.f.: ((x-1)*sqrt(x^2*(y^2+4)-2*x*(y+2)+1)+x^2*(2-y)-x*(y+3)+1)/(2*x^3*y*(1+y-x)).
Showing 1-3 of 3 results.