cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119335 Number triangle T(n,k) = Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).

This page as a plain text file.
%I A119335 #16 Sep 14 2023 03:40:24
%S A119335 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,5,5,1,
%T A119335 1,1,1,1,1,11,17,11,1,1,1,1,1,1,21,41,41,21,1,1,1,1,1,1,36,81,101,81,
%U A119335 36,1,1,1,1,1,1,57,141,201,201,141,57,1,1,1
%N A119335 Number triangle T(n,k) = Sum_{j=0..n-k} C(k,3j)*C(n-k,3j).
%C A119335 Row sums are A119336. Product of Pascal's triangle and A119337.
%H A119335 Seiichi Manyama, <a href="/A119335/b119335.txt">Rows n = 0..139, flattened</a>
%F A119335 Column k has g.f. (x^k/(1-x)) * Sum_{j=0..k} C(k,3j)(x/(1-x))^(3j).
%e A119335 Triangle begins
%e A119335 1;
%e A119335 1, 1;
%e A119335 1, 1, 1;
%e A119335 1, 1, 1,  1;
%e A119335 1, 1, 1,  1,  1;
%e A119335 1, 1, 1,  1,  1,   1;
%e A119335 1, 1, 1,  2,  1,   1,  1;
%e A119335 1, 1, 1,  5,  5,   1,  1,  1;
%e A119335 1, 1, 1, 11, 17,  11,  1,  1, 1;
%e A119335 1, 1, 1, 21, 41,  41, 21,  1, 1, 1;
%e A119335 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1;
%t A119335 T[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}];
%t A119335 Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 14 2023 *)
%Y A119335 T(2n,n) gives A119363.
%Y A119335 Cf. A119326.
%K A119335 easy,nonn,tabl
%O A119335 0,25
%A A119335 _Paul Barry_, May 14 2006
%E A119335 More terms from _Seiichi Manyama_, Mar 12 2019