This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119348 #8 Aug 06 2024 09:57:00 %S A119348 1,1,2,3,1,3,4,1,2,3,4,5,6,7,1,5,6,1,2,3,4,5,6,7,8,9,10,11,12,1,7,8,1, %T A119348 2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,3,4,9,10,12,13,1,2,3,5,6,7,8,10, %U A119348 11,12,13,15,16,17,18,1,11,12,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 %N A119348 Triangle read by rows: row n contains, in increasing order, all the distinct sums of distinct divisors of n. %C A119348 Row n contains A119347(n) terms. In row n the first term is 1 and the last term is sigma(n) (=sum of the divisors of n =A000203(n)). If row n contains all numbers from 1 to sigma(n), then n is called a practical number (A005153). %H A119348 T. D. Noe, <a href="/A119348/b119348.txt">Rows n=1..100, flattened</a> %e A119348 Row 5 is 1,5,6, the possible sums obtained from the divisors 1 and 5 of 5. %e A119348 Triangle starts: %e A119348 1; %e A119348 1,2,3; %e A119348 1,3,4; %e A119348 1,2,3,4,5,6,7; %e A119348 1,5,6; %e A119348 1,2,3,4,5,6,7,8,9,10,11,12; %e A119348 1,7,8; %e A119348 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15; %e A119348 1,3,4,9,10,12,13; %p A119348 with(numtheory): with(linalg): sums:=proc(n) local dl,t: dl:=convert(divisors(n),list): t:=tau(n): {seq(innerprod(dl,convert(2^t+i,base,2)[1..t]),i=1..2^t-1)} end: for n from 1 to 12 do sums(n) od; # yields sequence in triangular form %t A119348 row[n_] := Union[Total /@ Subsets[Divisors[n]]] // Rest; %t A119348 Table[row[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Aug 06 2024 *) %Y A119348 Cf. A000203, A005153, A119347. %K A119348 nonn,tabf %O A119348 1,3 %A A119348 _Emeric Deutsch_, May 15 2006