A119359 Central coefficients of number triangle A119326.
0, 1, 1, 7, 31, 106, 386, 1499, 5755, 21886, 83854, 323302, 1248534, 4828916, 18719364, 72711123, 282867795, 1101981430, 4298723990, 16788997874, 65641296578, 256895812108, 1006307847324, 3945185527582, 15478851119966
Offset: 0
Programs
-
Mathematica
Table[HypergeometricPFQ[{-1/2 - n/2, 1/2 - n/2, 1 - n/2, -n/2}, {1/2, 1/2, 1}, 1] - KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *) Table[(2^n Binomial[1/2, (n+1)/2] + Binomial[n, n/2] Cos[Pi n/2] + n CatalanNumber[n])/2 - KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 06 2016 *)
Formula
G.f.: (1/sqrt(1-4x)+(1/sqrt(1+4x^2)-1)-c(x)+x*c(-x^2))/2, c(x) the g.f. of A000108;
a(n) = (C(2n,n+1)+C((n-1)/2)*sin(Pi*n/2)-2*0^n-2C(n-1,n/2)*sin(Pi*(n-1)/2))/2.
a(n) = hypergeom([-1/2-n/2, 1/2-n/2, 1-n/2, -n/2], [1/2, 1/2, 1], 1) - 0^n. - Vladimir Reshetnikov, Oct 04 2016
Comments