cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119359 Central coefficients of number triangle A119326.

Original entry on oeis.org

0, 1, 1, 7, 31, 106, 386, 1499, 5755, 21886, 83854, 323302, 1248534, 4828916, 18719364, 72711123, 282867795, 1101981430, 4298723990, 16788997874, 65641296578, 256895812108, 1006307847324, 3945185527582, 15478851119966
Offset: 0

Views

Author

Paul Barry, May 16 2006

Keywords

Comments

a(n) = A119326(2n,n+1). A119358(n)-a(n) = A071688(n).

Programs

  • Mathematica
    Table[HypergeometricPFQ[{-1/2 - n/2, 1/2 - n/2, 1 - n/2, -n/2}, {1/2, 1/2, 1}, 1] - KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 04 2016 *)
    Table[(2^n Binomial[1/2, (n+1)/2]  + Binomial[n, n/2] Cos[Pi n/2] + n CatalanNumber[n])/2 - KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 06 2016 *)

Formula

G.f.: (1/sqrt(1-4x)+(1/sqrt(1+4x^2)-1)-c(x)+x*c(-x^2))/2, c(x) the g.f. of A000108;
a(n) = (C(2n,n+1)+C((n-1)/2)*sin(Pi*n/2)-2*0^n-2C(n-1,n/2)*sin(Pi*(n-1)/2))/2.
a(n) = hypergeom([-1/2-n/2, 1/2-n/2, 1-n/2, -n/2], [1/2, 1/2, 1], 1) - 0^n. - Vladimir Reshetnikov, Oct 04 2016