cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119362 Combinatorial twin prime formulas. This sequence gives the coefficients a(n) of combinatorial sum formulas of n-th twin primes or lesser: twin_prime(n) = 2^(n-6)/(n-1)! Sum_{i=1..n} a(i) * C(n-1,i-1) * (i+2-n).

This page as a plain text file.
%I A119362 #8 Jun 16 2016 23:27:30
%S A119362 32,8,32,52,208,508,2672,9278,71168,258772,2448352,11401798,123001112,
%T A119362 660768362,7257835148,50721144013,643561620832,4610932367548,
%U A119362 57562797069608,547637465534282,7281278491404272,71412114145523938
%N A119362 Combinatorial twin prime formulas. This sequence gives the coefficients a(n) of combinatorial sum formulas of n-th twin primes or lesser: twin_prime(n) = 2^(n-6)/(n-1)! Sum_{i=1..n} a(i) * C(n-1,i-1) * (i+2-n).
%e A119362 twin_prime(10) = [ 2^(10-6)/(10-1)! ] * [ 32*C(10-1,0)*(-7) + 8*C(10-1,1)*(-6) + 32*C(10-1,2)*(-5) + ... + 9278*C(10-1,7)*(0) + 71168*C(10-1,8)*(1) + 258772*C(10-1,9)*(2) ] = 31
%t A119362 Mathematica 5.2 - webMathematica 2 - http://library.wolfram.com/webMathematica/Education/LongDivide.jsp
%Y A119362 Cf. A001097, A000040, A120315, A000166, A115298, A008275.
%K A119362 easy,nonn
%O A119362 1,1
%A A119362 _André F. Labossière_, Jul 24 2006