This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119365 #15 Sep 14 2023 13:44:58 %S A119365 1,0,0,1,6,20,51,126,392,1513,5877,21054,71270,242463,863590,3193737, %T A119365 11889414,43783908,159998493,586908936,2175907284,8138471667, %U A119365 30541703733,114620380032,430344635913,1619584557885,6116422089050 %N A119365 Generalized Catalan numbers for triangle A119335. %C A119365 Counts rooted planar n-trees whose number of leaves is divisible by 3. %F A119365 a(n) = A119335(2n,n) - A119335(2n,n+1). %F A119365 a(n) = Sum_{k=0..n} if(mod(n-k,3)=0, (1/n)*C(n,k)*C(n,k+1), 0). %F A119365 a(n) + A119366(n) + A119367(n) = A000108(n). %p A119365 A119365 := proc(n) %p A119365 local k; %p A119365 if n = 0 then %p A119365 return 1 %p A119365 end if; %p A119365 a := 0 ; %p A119365 for k from 0 to n do %p A119365 if modp(n-k,3) = 0 then %p A119365 a := a+binomial(n,k)*binomial(n,k+1) ; %p A119365 end if; %p A119365 end do: %p A119365 a/n; %p A119365 end proc: %p A119365 seq(A119365(n),n=0..40) ; # _R. J. Mathar_, Oct 30 2014 %t A119365 A119335[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}]; %t A119365 a[n_] := A119335[2n, n] - A119335[2n, n+1]; %t A119365 Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Sep 14 2023 *) %Y A119365 Cf. A000108, A001263, A119335, A119366, A119367. %K A119365 easy,nonn %O A119365 0,5 %A A119365 _Paul Barry_, May 16 2006