cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119366 Number of rooted planar n-trees whose number of leaves is equal to 1 modulo 3.

Original entry on oeis.org

0, 1, 1, 1, 2, 11, 51, 177, 519, 1513, 5042, 18866, 71270, 257974, 905425, 3193737, 11578842, 42930441, 159998493, 593445318, 2194106568, 8138471667, 30399156174, 114219616809, 430344635913, 1622777285682, 6125465491551
Offset: 0

Views

Author

Paul Barry, May 16 2006

Keywords

Comments

a(n)+A119365(n)+A119367(n)=A000108(n).

Programs

  • Maple
    A119366 := proc(n)
        if n = 0 then
            0;
        else
            add(binomial(n,3*k+1)*binomial(n,3*k),k=0..n/3) ;
            %/n ;
        end if;
    end proc: # R. J. Mathar, Dec 02 2014

Formula

a(n)=sum{k=0..n, if(mod(n-k,3)=1, (1/n)*C(n,k)*C(n,k+1), 0)}
a(0)=0, a(n)=sum{k=0..floor(n/3), (1/n)*C(n,3k+1)C(n,3k)},n>0; - Paul Barry, Jan 25 2007
Conjecture D-finite with recurrence +n*(881*n-4580)*(n-2)*(n+1)*a(n) -3*n*(612*n^3-2827*n^2-2988*n+10135)*a(n-1) +3*(-3088*n^4+42803*n^3-190361*n^2+313702*n-167988)*a(n-2) +(43042*n^4-600920*n^3+2924411*n^2-5860777*n+4115562)*a(n-3) +3*(-38600*n^4+558681*n^3-2904370*n^2+6389913*n-4965528)*a(n-4) +3*(-14776*n^4+162695*n^3-434711*n^2-415064*n+1878084)*a(n-5) -9*(n-6)*(10835*n^3-106831*n^2+290611*n-173519)*a(n-6) +54*(n-6)*(n-7)*(593*n-1429)*(2*n-13)*a(n-7)=0. - R. J. Mathar, Feb 03 2025