This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119373 #7 Mar 17 2021 08:02:39 %S A119373 1,2,6,20,70,253,938,3546,13617,52967,208255,826315,3304456,13304924, %T A119373 53891402,219442686,897772983,3688451380,15211545938,62950542636, %U A119373 261329456566,1087985751336,4541524025769,19003488710465,79696345430789 %N A119373 A lower diagonal of pendular trinomial triangle A119369. %H A119373 G. C. Greubel, <a href="/A119373/b119373.txt">Table of n, a(n) for n = 0..1000</a> %F A119373 G.f.: A(x) = B(x)^2/(1+x - x*B(x)) = B(x)^2*G(x) = B(x)*H(x), where B(x) is g.f. of A119370, G(x) is g.f. of A119371 and H(x) is g.f. of A119372. %F A119373 G.f.: 8*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ). %t A119373 CoefficientList[Series[8*(1+x)/( ((1+x^2) + Sqrt[(1+x^2)^2 -4*x*(1+x)])^2*(1 + 4*x +x^2 +Sqrt[(1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x)])), {x,0,30}], x] (* _G. C. Greubel_, Mar 16 2021 *) %o A119373 (PARI) {a(n)=polcoeff(8*(1+x)/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n)))^2 /(1+4*x+x^2 + sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x)+x*O(x^n))),n)} %o A119373 (Sage) %o A119373 def A119373_list(prec): %o A119373 P.<x> = PowerSeriesRing(QQ, prec) %o A119373 return P( 8*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ) ).list() %o A119373 A119373_list(30) # _G. C. Greubel_, Mar 16 2021 %o A119373 (Magma) %o A119373 R<x>:=PowerSeriesRing(Rationals(), 30); %o A119373 Coefficients(R!( 8*(1+x)/( ((1+x^2) +Sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +Sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ) )); // _G. C. Greubel_, Mar 16 2021 %Y A119373 Cf. A119369, A119370, A119371, A119372, A119374, A119375, A119376. %K A119373 nonn %O A119373 0,2 %A A119373 _Paul D. Hanna_, May 17 2006