This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119375 #7 Mar 17 2021 08:02:53 %S A119375 1,3,11,40,149,564,2166,8420,33074,131085,523599,2105727,8519469, %T A119375 34652696,141621164,581266730,2394961851,9902433681,41074316737, %U A119375 170869972460,712729001716,2980264528670,12490379959184,52458339164169 %N A119375 Diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros. %H A119375 G. C. Greubel, <a href="/A119375/b119375.txt">Table of n, a(n) for n = 0..1000</a> %F A119375 G.f.: A(x) = B(x)*(G(x) - 1)/x^2 = B(x)*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369). %F A119375 G.f.: (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ). - _G. C. Greubel_, Mar 16 2021 %t A119375 CoefficientList[Series[(1-2*x-x^2 -Sqrt[1-4*x-2*x^2+x^4])/(x^2*(1+2*x^3+x^4 +(1+x)^2*Sqrt[1-4*x-2*x^2+x^4])), {x,0,30}], x] (* _G. C. Greubel_, Mar 16 2021 *) %o A119375 (PARI) {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2,n)} %o A119375 (Sage) %o A119375 def A119375_list(prec): %o A119375 P.<x> = PowerSeriesRing(QQ, prec) %o A119375 return P( (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ) ).list() %o A119375 A119375_list(30) # _G. C. Greubel_, Mar 16 2021 %o A119375 (Magma) %o A119375 R<x>:=PowerSeriesRing(Rationals(), 30); %o A119375 Coefficients(R!( (1-2*x-x^2 - Sqrt(1-4*x-2*x^2+x^4))/( 1+2*x^3+x^4 +(1+x)^2*Sqrt(1-4*x-2*x^2+x^4) ) )); // _G. C. Greubel_, Mar 16 2021 %Y A119375 Cf. A119369, A119370, A119371, A119372, A119373, A119374, A119376. %K A119375 nonn %O A119375 0,2 %A A119375 _Paul D. Hanna_, May 17 2006