cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119375 Diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.

This page as a plain text file.
%I A119375 #7 Mar 17 2021 08:02:53
%S A119375 1,3,11,40,149,564,2166,8420,33074,131085,523599,2105727,8519469,
%T A119375 34652696,141621164,581266730,2394961851,9902433681,41074316737,
%U A119375 170869972460,712729001716,2980264528670,12490379959184,52458339164169
%N A119375 Diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.
%H A119375 G. C. Greubel, <a href="/A119375/b119375.txt">Table of n, a(n) for n = 0..1000</a>
%F A119375 G.f.: A(x) = B(x)*(G(x) - 1)/x^2 = B(x)*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369).
%F A119375 G.f.: (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ). - _G. C. Greubel_, Mar 16 2021
%t A119375 CoefficientList[Series[(1-2*x-x^2 -Sqrt[1-4*x-2*x^2+x^4])/(x^2*(1+2*x^3+x^4 +(1+x)^2*Sqrt[1-4*x-2*x^2+x^4])), {x,0,30}], x] (* _G. C. Greubel_, Mar 16 2021 *)
%o A119375 (PARI) {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2,n)}
%o A119375 (Sage)
%o A119375 def A119375_list(prec):
%o A119375     P.<x> = PowerSeriesRing(QQ, prec)
%o A119375     return P( (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ) ).list()
%o A119375 A119375_list(30) # _G. C. Greubel_, Mar 16 2021
%o A119375 (Magma)
%o A119375 R<x>:=PowerSeriesRing(Rationals(), 30);
%o A119375 Coefficients(R!( (1-2*x-x^2 - Sqrt(1-4*x-2*x^2+x^4))/( 1+2*x^3+x^4 +(1+x)^2*Sqrt(1-4*x-2*x^2+x^4) ) )); // _G. C. Greubel_, Mar 16 2021
%Y A119375 Cf. A119369, A119370, A119371, A119372, A119373, A119374, A119376.
%K A119375 nonn
%O A119375 0,2
%A A119375 _Paul D. Hanna_, May 17 2006