cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119376 Second diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.

This page as a plain text file.
%I A119376 #12 Jan 25 2025 02:13:06
%S A119376 1,4,16,63,248,980,3894,15563,62555,252789,1026623,4188390,17159382,
%T A119376 70570380,291253664,1205935204,5008047097,20854723702,87064706122,
%U A119376 364334839028,1527943938306,6420911995109,27033938458595
%N A119376 Second diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.
%C A119376 Equals convolution of A119370 and A119375, which is the prior diagonal above the central terms of triangle A119369.
%H A119376 G. C. Greubel, <a href="/A119376/b119376.txt">Table of n, a(n) for n = 0..1000</a>
%F A119376 G.f.: A(x) = B(x)^2*(G(x) - 1)/x^2 = B(x)^2*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369).
%F A119376 G.f.: 2*(1-2*x-x^2-f(x))/( x^2*(1+2*x^3+x^4+(1+x)^2*f(x))*(1+x^2+f(x)) ) where f(x) = sqrt(1-4*x-2*x^2+x^4). - _G. C. Greubel_, Mar 17 2021
%t A119376 f[x_]:= Sqrt[1-4*x-2*x^2+x^4];
%t A119376 CoefficientList[Series[2*(1-2*x-x^2 -f[x])/(x^2*(1+2*x^3+x^4 +(1+x)^2*f[x])*(1+x^2 +f[x])), {x,0,30}], x] (* _G. C. Greubel_, Mar 17 2021 *)
%o A119376 (PARI) {a(n)=polcoeff(4/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))^2* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2,n)}
%o A119376 (SageMath)
%o A119376 def f(x): return sqrt(1-4*x-2*x^2+x^4)
%o A119376 def A119376_list(prec):
%o A119376     P.<x> = PowerSeriesRing(QQ, prec)
%o A119376     return P( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) ).list()
%o A119376 A119376_list(30) # _G. C. Greubel_, Mar 17 2021
%o A119376 (Magma)
%o A119376 R<x>:=PowerSeriesRing(Rationals(), 30);
%o A119376 f:= func< x | Sqrt(1-4*x-2*x^2+x^4) >;
%o A119376 Coefficients(R!( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) )); // _G. C. Greubel_, Mar 17 2021
%Y A119376 Cf. A119369, A119370, A119371, A119372, A119373, A119374, A119375.
%K A119376 nonn
%O A119376 0,2
%A A119376 _Paul D. Hanna_, May 17 2006