This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119383 #8 Jul 02 2020 08:02:49 %S A119383 0,0,0,1,11,87,640,4855,39909,361995,3626938,39912947,478993719, %T A119383 6227004807,87178258916,1307674303055,20922789757641,355687427834707, %U A119383 6402373705204718,121645100407784603,2432902008174544219 %N A119383 a(n) = n!- A088921(n). %H A119383 S. Billey, W. Jockusch and R. P. Stanley, <a href="http://dx.doi.org/10.1023/A:1022419800503">Some combinatorial properties of Schubert polynomials</a>, Journal of Algebraic Combinatorics 2(4) (1993) 345-374 %H A119383 S. Billey, W. Jockusch and R. P. Stanley. <a href="http://www.math.washington.edu/~billey/papers/bjs.pdf">Some combinatorial properties of Schubert polynomials</a>, Journal of Algebraic Combinatorics 2(4):345-374, 1993 %H A119383 K. Eriksson and S. Linusson, <a href="http://dx.doi.org/10.1215/S0012-7094-96-08502-6">Combinatorics of Fulton's essential set</a>, Duke Mathematical Journal 85(1) (1996) 61-76. %H A119383 A. Vella, <a href="https://doi.org/10.37236/1690">Pattern avoidance in permutations: linear and cyclic orders</a>, Electron. J. Combin. 9 (2002/03), no. 2, #R18, 43 pp. %t A119383 g[n_] = n! - (2^(n + 1) - Binomial[n + 1, 3] - 2*n - 1); Table[g[n], {n, 0, 30}] %Y A119383 Cf. A088921. %K A119383 nonn %O A119383 0,5 %A A119383 _Roger L. Bagula_, Jun 07 2007 %E A119383 Offset set to 0, definition shortened, References converted to URL's - The Assoc. Eds. of the OEIS, Oct 20 2010