This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119387 #138 Nov 22 2024 16:51:07 %S A119387 0,0,1,0,2,1,2,0,3,2,3,1,3,2,3,0,4,3,4,2,4,3,4,1,4,3,4,2,4,3,4,0,5,4, %T A119387 5,3,5,4,5,2,5,4,5,3,5,4,5,1,5,4,5,3,5,4,5,2,5,4,5,3,5,4,5,0,6,5,6,4, %U A119387 6,5,6,3,6,5,6,4,6,5,6,2,6,5,6,4,6,5,6,3,6,5,6,4,6,5,6,1,6,5,6,4,6,5,6,3,6 %N A119387 a(n) is the number of binary digits (1's and nonleading 0's) which remain unchanged in their positions when n and (n+1) are written in binary. %C A119387 The largest k for which A220645(n,k) > 0 is k = a(n). That is, a(n) is the largest power of 2 that divides binomial(n,i) for 0 <= i <= n. - _T. D. Noe_, Dec 18 2012 %C A119387 a(n) is the distance between the first and last 1's in the binary expansion of n+1; see examples and formulae. - _David James Sycamore_, Feb 21 2023 %H A119387 Paolo Xausa, <a href="/A119387/b119387.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1023 from T. D. Noe) %H A119387 Lukas Spiegelhofer and Michael Wallner, <a href="https://arxiv.org/abs/1604.07089">Divisibility of binomial coefficients by powers of primes</a>, arXiv:1604.07089 [math.NT], 2016. Mentions this sequence. %H A119387 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A119387 a(n) = A048881(n) + A086784(n+1). (A048881(n) is the number of 1's which remain unchanged between binary n and (n+1). A086784(n+1) is the number of nonleading 0's which remain unchanged between binary n and (n+1).) %F A119387 a(A000225(n))=0. - _R. J. Mathar_, Jul 29 2006 %F A119387 a(n) = -valuation(H(n)*n,2) where H(n) is the n-th harmonic number. - _Benoit Cloitre_, Oct 13 2013 %F A119387 a(n) = A000523(n+1) - A007814(n+1) = floor(log(n+1)/log(2)) - valuation(n+1,2). - _Benoit Cloitre_, Oct 13 2013 [corrected by _David James Sycamore_, Feb 28 2023] %F A119387 Recurrence: a(2n) = floor(log_2(n)) except a(0) = 0, a(2n+1) = a(n). - _Ralf Stephan_, Oct 16 2013, corrected by _Peter J. Taylor_, Mar 01 2020 %F A119387 a(n) = floor(log_2(A000265(n+1))). - _Laura Monroe_, Oct 18 2020 %F A119387 a(n) = A070939(n+1) - A001511(n+1). - _David James Sycamore_, Feb 24 2023 %e A119387 9 in binary is 1001. 10 (decimal) is 1010 in binary. 2 binary digits remain unchanged (the leftmost two digits) between 1001 and 1010. So a(9) = 2. %e A119387 From _David James Sycamore_, Feb 26 2023: (Start) %e A119387 Number of bits surviving transition from n to n+1 = distance between first and last 1's in binary expansion of n+1 (no need to compare n and n+1). Examples: %e A119387 n = 2^k - 1: distance between 1's in n+1 = 2^k is 0; a(n) = 0 (all bits change). %e A119387 82 in binary is 1010010, and 83 is 1010011 distance between 1's in 83 = 6 = a(82). %e A119387 Show visually for a(327) = 5: %e A119387 n = 327 = 101000111 %e A119387 ^^^^^ 5 unchanged bits. %e A119387 n+1 = 328 = 101001000 %e A119387 ^ ^ distance between 1's = 5. (End) %p A119387 a:= n-> ilog2(n+1)-padic[ordp](n+1, 2): %p A119387 seq(a(n), n=0..128); # _Alois P. Heinz_, Jun 28 2021 %t A119387 a = {0}; Table[b = IntegerDigits[n, 2]; If[Length[a] == Length[b], c = 1; While[a[[c]] == b[[c]], c++]; c--, c = 0]; a = b; c, {n, 101}] (* _T. D. Noe_, Dec 18 2012 *) %t A119387 (* Second program, faster *) %t A119387 Array[Last[#] - First[#] &@ Position[IntegerDigits[#, 2], 1][[All, 1]] &, 2^14] (* _Michael De Vlieger_, Feb 22 2023 *) %t A119387 Table[BitLength[k] - 1 - IntegerExponent[k, 2], {k, 100}] (* _Paolo Xausa_, Oct 01 2024 *) %o A119387 (C) %o A119387 #include <stdio.h> %o A119387 #define NMAX 200 %o A119387 int sameD(int a, int b) { int resul=0 ; while(a>0 && b >0) { if( (a &1) == (b & 1)) resul++ ; a >>= 1 ; b >>= 1 ; } return resul ; } %o A119387 int main(int argc, char*argv[]) %o A119387 { for(int n=0;n<NMAX;n++) printf("%d,",sameD(n,n+1)) ; return 0 ; } %o A119387 /* _R. J. Mathar_, Jul 29 2006 */ %o A119387 (Haskell) %o A119387 a119387 n = length $ takeWhile (< a070940 n) [1..n] %o A119387 -- _Reinhard Zumkeller_, Apr 22 2013 %o A119387 (PARI) a(n) = n++; local(c); c=0; while(2^(c+1)<n+1, c=c+1); c-valuation(n, 2); /* _Ralf Stephan_, Oct 16 2013; corrected by _Michel Marcus_, Jun 28 2021 */ %o A119387 (PARI) a(n) = my(x=Vecrev(binary(n)), y=Vecrev(binary(n+1))); sum(k=1, min(#x, #y), x[k] == y[k]); \\ _Michel Marcus_, Jun 27 2021 %o A119387 (PARI) a(n) = exponent(n+1) - valuation(n+1, 2); \\ _Antoine Mathys_, Nov 20 2024 %o A119387 (C) %o A119387 int A119387(int n) %o A119387 { %o A119387 int m=n+1; %o A119387 while (!(m&1)) m>>=1; %o A119387 int m_bits = 0; %o A119387 while (m>>=1) m_bits++; %o A119387 return m_bits; %o A119387 } %o A119387 /* _Laura Monroe_, Oct 18 2020 */ %o A119387 (Python) %o A119387 def A119387(n): return (n+1).bit_length()-(n+1&-n-1).bit_length() # _Chai Wah Wu_, Jul 07 2022 %Y A119387 Cf. A048881, A086784. %Y A119387 Cf. A070940. %Y A119387 Cf. A000265. %Y A119387 Cf. A001511, A070939. %Y A119387 Cf. A373709 (partial sums). %K A119387 easy,nonn,base %O A119387 0,5 %A A119387 _Leroy Quet_, Jul 26 2006 %E A119387 More terms from _R. J. Mathar_, Jul 29 2006 %E A119387 Edited by _Charles R Greathouse IV_, Aug 04 2010