This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119403 #20 Jun 19 2021 04:53:05 %S A119403 745757,1103639,1583369,1895359,2124049,3327419,4234537,4437779, %T A119403 5071973,6287647,7702573,8470927,8675923,9493151,9750079,10868203, %U A119403 11213843,14244173,14796253,14978893,15611909,16489273,17528681,18280771,19125163,19403831,19631411,21975167 %N A119403 Primes p=prime(i) of level (1,10), i.e., such that A118534(i)=prime(i-10). %C A119403 This subsequence of A125830 and of A162174 gives primes of level (1,10): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k). %H A119403 Fabien Sibenaler, <a href="/A119403/b119403.txt">Table of n, a(n) for n = 1..10000</a> %e A119403 prime(353166) - prime(353165) = 5072057 - 5071973 = 5071973 - 5071889 = prime(353165) - prime(353165-10) and prime(353165) has level 1 in A117563, so prime(353165)=5071973 has level (1,10). %o A119403 (PARI) lista(nn) = my(c=11, v=primes(11)); forprime(p=37, nn, if(2*v[c]-p==v[c=c%11+1], print1(precprime(p-1), ", ")); v[c]=p); \\ _Jinyuan Wang_, Jun 18 2021 %Y A119403 Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467. %K A119403 nonn %O A119403 1,1 %A A119403 _Rémi Eismann_ and _Fabien Sibenaler_, Jul 25 2006 %E A119403 More terms from _Fabien Sibenaler_, Oct 20 2006 %E A119403 Definition and comment reworded following suggestions from the authors. - _M. F. Hasler_, Nov 30 2009