This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119441 #19 Dec 18 2016 12:44:05 %S A119441 1,2,1,3,2,1,5,3,4,2,1,7,5,6,3,4,2,1,11,7,10,9,5,6,8,3,4,2,1,15,11,14, %T A119441 15,7,10,9,12,5,6,8,3,4,2,1,22,15,22,21,25,11,14,15,20,18,7,10,9,12, %U A119441 16,5,6,8,3,4,2,1,30,22,30,33,35,15,22,21 %N A119441 Distribution of A063834 in Abramowitz and Stegun order. %H A119441 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Page=831">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %F A119441 T(n,k) = product_{p=1..A036043(n,k)} A000041(c), 1<=k<=A000041(n), where c are the parts in the k-th partition of n. - _R. J. Mathar_, Jul 12 2013 %e A119441 1; %e A119441 2, 1; %e A119441 3, 2, 1; %e A119441 5, 3, 4, 2, 1; %e A119441 7, 5, 6, 3, 4, 2, 1; %e A119441 T(5,2) = 5 because the second partition of 5 is 1+4 and 4 can be repartitioned in 5 different ways. %e A119441 T(5,3) = 6 because the third partition of 5 is 2+3, where the 2 can be partitioned in 2 ways (2, 1+1) and the 3 can be partitioned in 3 ways (3, 1+2, 1+1+1), 6=2*3. %e A119441 T(5,4) = 3 because the fourth partition of 5 is 1+1+3 and 3 can be partitioned in 3 different ways. %p A119441 # Compare two partitions (list) in AS order. %p A119441 AScompare := proc(p1,p2) %p A119441 if nops(p1) > nops(p2) then %p A119441 return 1; %p A119441 elif nops(p1) < nops(p2) then %p A119441 return -1; %p A119441 else %p A119441 for i from 1 to nops(p1) do %p A119441 if op(i,p1) > op(i,p2) then %p A119441 return 1; %p A119441 elif op(i,p1) < op(i,p2) then %p A119441 return -1; %p A119441 end if; %p A119441 end do: %p A119441 return 0 ; %p A119441 end if; %p A119441 end proc: %p A119441 # Produce list of partitions in AS order %p A119441 ASPrts := proc(n) %p A119441 local pi,insrt,p,ex ; %p A119441 pi := [] ; %p A119441 for p in combinat[partition](n) do %p A119441 insrt := 0 ; %p A119441 for ex from 1 to nops(pi) do %p A119441 if AScompare(p, op(ex,pi)) > 0 then %p A119441 insrt := ex ; %p A119441 end if; %p A119441 end do: %p A119441 if nops(pi) = 0 then %p A119441 pi := [p] ; %p A119441 elif insrt = 0 then %p A119441 pi := [p,op(pi)] ; %p A119441 elif insrt = nops(pi) then %p A119441 pi := [op(pi),p] ; %p A119441 else %p A119441 pi := [op(1..insrt,pi),p,op(insrt+1..nops(pi),pi)] ; %p A119441 end if; %p A119441 end do: %p A119441 return pi ; %p A119441 end proc: %p A119441 A119441 := proc(n,k) %p A119441 local pi,a,p ; %p A119441 pi := ASPrts(n)[k] ; %p A119441 a := 1 ; %p A119441 for p in pi do %p A119441 a := a*combinat[numbpart](p) ; %p A119441 end do: %p A119441 a ; %p A119441 end proc: %p A119441 for n from 1 to 10 do %p A119441 for k from 1 to A000041(n) do %p A119441 printf("%d,",A119441(n,k)) ; %p A119441 end do: %p A119441 printf("\n") ; %p A119441 end do: # _R. J. Mathar_, Jul 12 2013 %Y A119441 Cf. A063834, A119442, A000041 (row lengths and also first column) %K A119441 easy,nonn,tabf %O A119441 1,2 %A A119441 _Alford Arnold_, May 19 2006