This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119445 #13 Apr 07 2023 08:57:35 %S A119445 1,1,1,1,1,3,7,13,27,63,109,207,331,553,931,1531,2527,4093,6673,10831, %T A119445 17563,28561,46227,74883,121219,196239,317607,514047,831823,1346041, %U A119445 2178079,3524323,5702619,9227161,14930019,24157471,39087823,63245551 %N A119445 Leading diagonal of triangle A119444. %H A119445 G. C. Greubel, <a href="/A119445/b119445.txt">Table of n, a(n) for n = 1..1000</a> %F A119445 a(n) = A119444(n, n). %t A119445 t[1, n_]:= Fibonacci[n+1]; (* t = A119444 *) %t A119445 t[m_, n_]/; 1<m<=n:= t[m, n]= (n-m+1)*Floor[(t[m-1,n] -1)/(n-m+1)]; %t A119445 t[_, _]= 0; %t A119445 A119445[n_]:= A119445[n]= t[n,n]; %t A119445 Table[A119445[n], {n,60}] (* _G. C. Greubel_, Apr 07 2023 *) %o A119445 (Magma) %o A119445 function t(n,k) // t = A119444 %o A119445 if k eq 1 then return Fibonacci(n+1); %o A119445 else return (n-k+1)*Floor((t(n,k-1) -1)/(n-k+1)); %o A119445 end if; %o A119445 end function; %o A119445 [t(n,n): n in [1..60]]; // _G. C. Greubel_, Apr 07 2023 %o A119445 (SageMath) %o A119445 def t(n, k): # t = A119444 %o A119445 if (k==1): return fibonacci(n+1) %o A119445 else: return (n-k+1)*((t(n, k-1) -1)//(n-k+1)) %o A119445 def A119445(n): return t(n,n) %o A119445 [A119445(n) for n in range(1,61)] # _G. C. Greubel_, Apr 07 2023 %Y A119445 Cf. A119444 for triangle corresponding to this sequence. %Y A119445 Cf. A100461 for powers of 2, A119446 for primes. %K A119445 nonn %O A119445 1,6 %A A119445 _Joshua Zucker_, May 20 2006