This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A119509 #40 Nov 28 2022 01:47:00 %S A119509 1,2,3,4,5,6,7,8,9,13,14,16,17,18,19,23,24,25,27,28,29,31,32,33,36,37, %T A119509 42,43,44,48,49,51,52,53,54,55,57,59,61,64,66,69,71,72,73,74,78,79,82, %U A119509 84,86,87,89,93,95,96,98,99,113,116,117,118,124,126,128,133 %N A119509 Positive numbers whose square contains no digit more than once. %C A119509 There are exactly 610 terms. a(610) = 99066 and 99066^2 = 9814072356. - _Rick L. Shepherd_, Jul 27 2006 %C A119509 If we count 0, there is one more term, for a total of 611. - _T. D. Noe_, Jun 21 2013 %H A119509 Rick L. Shepherd, <a href="/A119509/b119509.txt">Table of n, a(n) for n = 1..610</a> (full sequence) %p A119509 lim:=floor(sqrt(9876543210)): A119509:={}: for n from 1 to lim do pandig:=true: d:=convert(n^2,base,10): for k from 0 to 9 do if(numboccur(k, d)>1)then pandig:=false: break: fi: od: if(pandig)then A119509 := A119509 union {n}: fi: od: op(sort(convert(A119509,list))); # _Nathaniel Johnston_, Jun 23 2011 %t A119509 Select[Range[1000000], Length[IntegerDigits[ # ^2]] == Length[Union[IntegerDigits[ # ^2]]] &] (* _Tanya Khovanova_, May 29 2007 *) %t A119509 Select[Range[10^5], Max[DigitCount[#^2]] <= 1 &] (* _T. D. Noe_, Aug 02 2011 *) %o A119509 (Magma) [n: n in [1..10^5] | #Set(d) eq #d where d is Intseq(n^2)]; // _Bruno Berselli_, Aug 02 2011 %o A119509 (PARI) is_A119509(n)=#(n=digits(n^2))==#Set(n) \\ _M. F. Hasler_, Sep 08 2017 %o A119509 (Python) %o A119509 def ok(n): s = str(n**2); return n > 0 and len(set(s)) == len(s) %o A119509 afull = [k for k in range(10**5) if ok(k)] # _Michael S. Branicky_, Nov 27 2022 %Y A119509 Subsequence of A045540 = numbers whose squares contain an equal number of each digit that they contain. The first number that belongs to A045540 and doesn't belong to this sequence is number 88. %Y A119509 Cf. A078255, A036745, A075309, A162950. %K A119509 base,fini,full,nonn %O A119509 1,2 %A A119509 _Tanya Khovanova_, Jul 26 2006 %E A119509 More terms from _Rick L. Shepherd_, Jul 27 2006