cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A119509 Positive numbers whose square contains no digit more than once.

This page as a plain text file.
%I A119509 #40 Nov 28 2022 01:47:00
%S A119509 1,2,3,4,5,6,7,8,9,13,14,16,17,18,19,23,24,25,27,28,29,31,32,33,36,37,
%T A119509 42,43,44,48,49,51,52,53,54,55,57,59,61,64,66,69,71,72,73,74,78,79,82,
%U A119509 84,86,87,89,93,95,96,98,99,113,116,117,118,124,126,128,133
%N A119509 Positive numbers whose square contains no digit more than once.
%C A119509 There are exactly 610 terms. a(610) = 99066 and 99066^2 = 9814072356. - _Rick L. Shepherd_, Jul 27 2006
%C A119509 If we count 0, there is one more term, for a total of 611. - _T. D. Noe_, Jun 21 2013
%H A119509 Rick L. Shepherd, <a href="/A119509/b119509.txt">Table of n, a(n) for n = 1..610</a> (full sequence)
%p A119509 lim:=floor(sqrt(9876543210)): A119509:={}: for n from 1 to lim do pandig:=true: d:=convert(n^2,base,10): for k from 0 to 9 do if(numboccur(k, d)>1)then pandig:=false: break: fi: od: if(pandig)then A119509 := A119509 union {n}: fi: od: op(sort(convert(A119509,list))); # _Nathaniel Johnston_, Jun 23 2011
%t A119509 Select[Range[1000000], Length[IntegerDigits[ # ^2]] == Length[Union[IntegerDigits[ # ^2]]] &] (* _Tanya Khovanova_, May 29 2007 *)
%t A119509 Select[Range[10^5], Max[DigitCount[#^2]] <= 1 &] (* _T. D. Noe_, Aug 02 2011 *)
%o A119509 (Magma) [n: n in [1..10^5] | #Set(d) eq #d where d is Intseq(n^2)];  // _Bruno Berselli_, Aug 02 2011
%o A119509 (PARI) is_A119509(n)=#(n=digits(n^2))==#Set(n) \\ _M. F. Hasler_, Sep 08 2017
%o A119509 (Python)
%o A119509 def ok(n): s = str(n**2); return n > 0 and len(set(s)) == len(s)
%o A119509 afull = [k for k in range(10**5) if ok(k)] # _Michael S. Branicky_, Nov 27 2022
%Y A119509 Subsequence of A045540 = numbers whose squares contain an equal number of each digit that they contain. The first number that belongs to A045540 and doesn't belong to this sequence is number 88.
%Y A119509 Cf. A078255, A036745, A075309, A162950.
%K A119509 base,fini,full,nonn
%O A119509 1,2
%A A119509 _Tanya Khovanova_, Jul 26 2006
%E A119509 More terms from _Rick L. Shepherd_, Jul 27 2006